Skip to main content
Log in

Reduction and Integrability of Stochastic Dynamical Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction, and integrability. In particular, we show that an SDS that is diffusion-wise symmetric with respect to a proper Lie group action can be diffusion-wise reduced to an SDS on the quotient space. We also show necessary and sufficient conditions for an SDS to be projectable via a surjective map. We then introduce the notion of integrability of SDS’s, and extend the results on the existence and structure-preserving property of Liouville torus actions from the classical case to the case of integrable SDS’s. We also show how integrable SDS’s are related to compatible families of integrable Riemannian metrics on manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Albeverio and S. Fei, “Remark on symmetry of stochastic dynamical systems and their conserved quantities,” J. Phys. A, 28, 6363–6371 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  2. J.-M. Bismut, Mecanique Aleatoire, Lect. Notes Math., Vol. 866, Springer, Berlin (1981).

  3. M. Blaszak, Z. Domański, A. Sergyeyev, and B. Szablikowski, “Integrable quantum Stäckel systems,” Phys. Lett. A, 377, No. 38, 2564–2572 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. V. Bolsinov and V. S. Matveev, “Geometrical interpretation of Benenti systems,” J. Geom. Phys., 44, No. 4, 489–506 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. N. Borodin and M. I. Freidlin, “Fast oscillating random perturbations of dynamical systems with conservation laws,” Ann. Inst. H. Poincaré Probab. Stat., 31, No. 3, 485–525 (1995).

    MathSciNet  MATH  Google Scholar 

  6. C. Duval and G. Valent, “Quantum integrability of quadratic Killing tensors,” J. Math. Phys., 46, No. 5, 053516 (2005).

  7. A. T. Fomenko and A. V. Bolsinov, Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton (2004).

  8. M. Freidlin and M. Weber, “Random perturbations of dynamical systems and diffusion processes with conservation laws,” Probab. Theory Relat. Fields, 128, No. 3, 441–466 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. R. Galmarino, “Representation of an isotropic diffusion as a skew product,” Z. Wahrsch. Verw. Gebiete, 1, No. 4, 359–378 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gitterman, The Noisy Oscillator: The First Hundred Years, from Einstein until Now, World Scientific, New York (2005).

    Book  MATH  Google Scholar 

  11. K. Grove, H. Karcher, and E. A. Ruh, “Group actions and curvature,” Invent. Math., 23, 31–48 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Lib., Vol. 24, North-Holland (1981).

  13. B. Jovanovic, “Symmetries and integrability,” Publ. Inst. Math. (Beograd), 84 (98), 1–36 (2008).

  14. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, Cambridge (1997).

  15. J.-A. Lázaro-Camíand J.-P. Ortega, “Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations,” Stoch. Dyn., 9, No. 1, 1–46 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. Xue-Mei Li, “An averaging principle for a completely integrable stochastic Hamiltonian system,” Nonlinearity, 21, No. 4, 803–822 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Liao, “A decomposition of Markov processes via group action,” J. Theor. Probab., 22, No. 1, 164–185 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Liouville, “Note sur l’intégration des équations différentielles de la dynamique,” J. Math. Pures Appl., 20 137–138 (1855).

    Google Scholar 

  19. L. Markus and A. Weerasinghe, “Stochastic oscillators,” J. Differ. Equ., 71, No. 2, 288–314 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. S. Matveev, “Quantum integrability of the Beltrami–Laplace operator for geodesically equivalent metrics,” Russ. Math. Dokl., 61, No. 2 216–219 (2000).

  21. T. Misawa, “Conserved quantities and symmetries related to stochastic dynamical systems,” Ann. Inst. Stat. Math., 51, No. 4, 779–802 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Øksendal, Stochastic Differential Equations, Springer, Berlin (2003).

    Book  MATH  Google Scholar 

  23. E. J. Pauwels and L. C. G. Rogers, “Skew-product decompositions of Brownian motions,” Contemp. Math., 73, 237–262 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Taylor, Pseudodifferential Operators, Springer, New York (1996).

    Book  Google Scholar 

  25. N. T. Zung, “Torus actions and integrable systems,” in: Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., Cambridge (2006), pp. 289–328.

  26. N. T. Zung, “A general approach to the problem of action-angle variables,” in preparation (see also the earlier version: “Action-angle variables on Dirac manifolds,” arXiv:1204.3865).

  27. N. T. Zung and N. T. Thien, “Physics-like second-order models of financial assets prices,” in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Tien Zung.

Additional information

Dedicated to Anatoly Timofeevich Fomenko on the occasion of his 70th birthday

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 20, No. 3, pp. 213–249, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zung, N.T., Thien, N.T. Reduction and Integrability of Stochastic Dynamical Systems. J Math Sci 225, 681–706 (2017). https://doi.org/10.1007/s10958-017-3486-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3486-1

Navigation