Skip to main content
Log in

Complex, Symplectic, and Contact Structures on Low-Dimensional Lie Groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

It is well known that on any Lie group, a left-invariant Riemannian structure can be defined. For other left-invariant geometric structures, for example, complex, symplectic, or contact structures, there are difficult obstructions for their existence, which have still not been overcome, although a lot of works were devoted to them. In recent years, substantial progress in this direction has been made; in particular, classification theorems for low-dimensional groups have been obtained. This paper is a brief review of left-invariant complex, symplectic, pseudo-Kählerian, and contact structures on low-dimensional Lie groups and classification results for Lie groups of dimension 4, 5, and 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abbena, S. Garbiero, and S. Salamon, Almost Hermitian geometry on six-dimensional nilmanifolds, preprint, arXiv:math/0007066v1 [math.DG].

  2. E. Abbena, S. Garbiero, and S. Salamon, “Hermitian geometry on the Iwasawa manifold,” Boll. Un. Mat. Ital., 11-B, 231–249 (1997).

    MathSciNet  Google Scholar 

  3. D. V. Alekseevsky and B. N. Kimelfeld, “On the structure of homogeneous Riemannian spaces with zero Ricci curvature,” Funkts. Anal. Prilozh., 9, No. 2, 5–11 (1975).

    Google Scholar 

  4. D. V. Alekseevsky and L. David, Invariant generalized complex structures on Lie groups, preprint, arXiv:1009.1123v4 [math.DG] (2010).

  5. J. M. Ancochea and R. Campoamor-Stursberg, “Symplectic forms and products by generators,” Comm. Algebra, 30, 4235–4249 (2002).

    MATH  MathSciNet  Google Scholar 

  6. J. M. Ancochea and R. Campoamor-Stursberg, “On the cohomology of Frobeniusian model Lie algebras,” Forum Math., 16, 249–262 (2004).

    MATH  MathSciNet  Google Scholar 

  7. A. Andrada, Hypersymplectic four-dimensional Lie algebras, preprint, arXiv:math.DG/0310462.

  8. A. Andrada, A. Fino, and L. Vezzoni, A class of Sasakian 5-manifolds, preprint, arXiv:0807.1800v2 [math.DG].

  9. A. Andrada, M. L. Barberis, and I. G. Dotti, Classification of Abelian complex structures on 6-dimensional Lie algebras, preprint, arXiv:0908.3213v1 [math.RA] (2009).

  10. A. Andrada, M. L. Barberis, I. G. Dotti, and G. P. Ovando, “Product structures on four-dimensional solvable Lie algebras,” Homology Homotopy Appl., 7, 9–37 (2005), arXiv:math.RA/0402234.

    MATH  MathSciNet  Google Scholar 

  11. A. Andrada and S. Salamon, Complex product structures on Lie algebras, preprint, arXiv:math/0305102v1 [math.DG].

  12. I. K. Babenko and I. A. Taimanov, “On the formality problem for symplectic manifolds,” Contemp. Math., 288, 1–8 (2001).

    MathSciNet  Google Scholar 

  13. I. K. Babenko and I. A. Taimanov, “On nonformal simply connected symplectic manifolds,” Sib. Mat. Zh., 41, No. 2, 204–217 (2000); arXiv:math.SG/9811167.

    MathSciNet  Google Scholar 

  14. M. L. Barberis and I. Dotti, “Hypercomplex structures on a class of solvable Lie groups,” Quart. J. Math. Oxford, 47, No. 2, 389–404 (1996).

    MATH  Google Scholar 

  15. M. L. Barberis and I. G. Dotti, “Abelian complex structures on solvable Lie algebras,” J. Lie Theory, 14, 25–34 (2004); arXiv:math/0202220v1 [math.RA].

    MATH  MathSciNet  Google Scholar 

  16. M. L. Barberis, I. G. Dotti, and R. J. Miatello, “On certain locally homogeneous Clifford manifolds,” Ann. Global Anal. Geom., 13, 289–301 (1995).

    MATH  MathSciNet  Google Scholar 

  17. M. L. Barberis, I. G. Dotti, and M. Verbitsky, “Canonical bundles of complex nilmanifolds with applications to hypercomplex geometry,” Math. Res. Lett., 16, No. 2, 331–347 (2009); arXiv:0712.3863.

    MATH  MathSciNet  Google Scholar 

  18. C. Benson and C. Gordon, “Kähler and symplectic structures on nilmanifolds,” Proc. Am. Math. Soc., 108, No. 4, 971–980 (1990).

    MATH  MathSciNet  Google Scholar 

  19. C. Benson and C. S. Gordon, “Kähler and symplectic structures on nilmanifolds,” Topology, 27, 513–518 (1988).

    MATH  MathSciNet  Google Scholar 

  20. D. E. Blair, “On the non-existence of flat contact metric structures,” Tôhoku Math. J. (2), 8, No. 3, 373–379 (1976).

  21. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes Math., 509, Springer-Verlag, Berlin–New York (1976).

  22. D. E. Blair, “Riemannian geometry of contact and symplectic manifolds,” Progr. Math., 203 (2010).

  23. W. M. Boothby and H. C. Wang, “On contact manifolds,” Ann. Math. (2), 68, 721–734 (1958).

  24. M. Bordemann, A. Medina, and A. Ouadfel, “Le groupe affine comme variété symplectique,” Tôhoku Math. J. (2), 45, No. 3, 423–436 (1993).

  25. N. Boyom, “Models for solvable symplectic Lie groups,” Indiana Univ. Math. J., 42, 1149–1168 (1993).

    MATH  MathSciNet  Google Scholar 

  26. F. E. Burstall and J. H. Rawnsley, Twistor Theory for Riemannian Symmetric Spaces, Lect. Notes Math., 1424, Springer-Verlag, Berlin–New York (1990).

  27. F. Campana, “Remarques sur les groupes de Kähler nilpotents,” C. R. Acad. Sci. Paris, 317, 777–780 (1993).

    MATH  MathSciNet  Google Scholar 

  28. R. Campoamor-Stursberg, “Contractions of Lie algebras and generalized Casimir invariants,” Acta Phys. Polon. B, 34, 3901–3920 (2003).

    MATH  MathSciNet  Google Scholar 

  29. R. Campoamor-Stursberg, “An alternative interpretation of the Beltrametti–Blasi formula by means of differential forms,” Phys. Lett. A, 327, 138–145 (2004).

    MATH  MathSciNet  Google Scholar 

  30. R. Campoamor-Stursberg, Symplectic forms on six-dimensional real solvable Lie algebras, I, preprint, arXiv:math/0507499v2 [math.DG].

  31. G. R. Cavalcanti and M. Gualtieri, “Generalized complex structures on nilmanifolds,” J. Symplectic Geom., 2, 393–410 (2004); arXiv:math.DG/0404451v1.

    MATH  MathSciNet  Google Scholar 

  32. C. Chevalley and S. Eilenberg, “Cohomology theory of Lie groups and Lie algebras,” Trans. Am. Math. Soc., 63, 85–124 (1948).

    MATH  MathSciNet  Google Scholar 

  33. B.-Y. Chu, “Symplectic homogeneous spaces,” Trans. Am. Math. Soc., 197, 145–159 (1974).

    MATH  Google Scholar 

  34. S. Console, A. Fino, and Y. S. Poon, “Stability of Abelian complex structures,” Int. J. Math., 17, No. 4, 401–416 (2006).

    MATH  MathSciNet  Google Scholar 

  35. L. A. Cordero, M. Fernández, and A. Gray, “Symplectic manifolds without Kähler structure,” Topology, 25, 375–380 (1986).

    MATH  MathSciNet  Google Scholar 

  36. L. A. Cordero, M. Fernández, and A. Gray, “Lie groups with no left-invariant complex structures,” Portug. Math., 47, No. 2, 183–190 (1990).

    Google Scholar 

  37. L. A. Cordero, M. Fernández, A. Gray, and L. Ugarte, “Nilpotent complex structures on compact nilmanifolds,” Rend. Circ. Mat. Palermo, 49, Suppl., 83–100 (1997).

    Google Scholar 

  38. L. A. Cordero, M. Fernández, and L. Ugarte, “Abelian complex structures on 6-dimensional compact nilmanifolds,” Comment. Math. Univ. Carolin., 43, 215–229 (2002).

    MATH  MathSciNet  Google Scholar 

  39. L. A. Cordero, M. Fernández, and L. Ugarte, “Lefschetz complex conditions for complex manifolds,” Ann. Global Anal. Geom., 22, 215–229 (2002).

    Google Scholar 

  40. L. A. Cordero, M. Fernández, and L. Ugarte, “Pseudo-Kähler metrics on six-dimensional nilpotent Lie algebras,” J. Geom. Phys., 50, 115–137 (2004).

    MATH  MathSciNet  Google Scholar 

  41. L. A. Cordero, M. Fernández, A. Gray, and L. Ugarte, “Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology,” Trans. Am. Math. Soc., 352, 5405–5433 (2000).

    MATH  Google Scholar 

  42. L. A. Cordero, M. Fernández, and L. Ugarte, “Abelian complex structures on 6-dimensional compact nilmanifolds,” Comment. Math. Univ. Carolin., 43, No. 2, 215–229 (2002).

    MATH  MathSciNet  Google Scholar 

  43. T. J. Courant, “Dirac manifolds,” Trans. Am. Math. Soc., 319, 631–661 (1990).

    MATH  MathSciNet  Google Scholar 

  44. J. M. Dardié and A. Medina, “Algèbres de Lie kählèriennes et double extension,” J. Algebra 3, 185, 774–795 (1996).

    Google Scholar 

  45. J. M. Dardié, A. Medina, and H. Siby, Geometry of Certain Lie–Frobenius Groups, preprint, arXiv:math/0506365v1 [math.DG].

  46. A. Diatta, “Géométrie de Poisson et de contact des espaces homogènes, Ph.D. Thesis. University Montpellier 2, France (2000).

  47. A. Diatta, “Left-invariant contact structures on Lie groups,” Differ. Geom. Appl., 26, No. 5, 544–552 (2008); arXiv:math.DG/0403555.v2.

    MATH  MathSciNet  Google Scholar 

  48. A. Diatta, “Riemannian geometry on contact Lie groups,” Geom. Dedic., 133, 83–94 (2008).

    MATH  MathSciNet  Google Scholar 

  49. A. Diatta and A. Medina, “Classical Yang–Baxter equation and left-invariant affine geometry on Lie groups,” Manuscr. Math., 114, No. 4, 477–486 (2004).

    MATH  MathSciNet  Google Scholar 

  50. J. Dorfmeister and K. Nakajima, “The fundamental conjecture for homogeneous Kähler manifolds,” Acta Math., 161, 189–208 (1986).

    MathSciNet  Google Scholar 

  51. I. Dotti and A. Fino, “Hypercomplex nilpotent Lie groups,” Contemp. Math., 288, 310–314 (2001).

    MathSciNet  Google Scholar 

  52. J. Dozias, Sur les algèbres de Lie résolubles réelles de dimension inférieure ou égale à 5, Thése de 3 cycle, Faculté de Sciences de Paris (1963).

  53. A. Fino and I. G. Dotti, “Abelian hypercomplex 8-dimensional nilmanifolds,” Ann. Global Anal. Geom., 18, No. 1, 47–59 (2000).

    MATH  MathSciNet  Google Scholar 

  54. A. Fino, M. Parton, and S. Salamon, Families of strong KT structures in six dimensions, preprint, arXiv:math/0209259v1 [math.DG].

  55. H. Geiges, “A brief history of contact geometry and topology,” Expos. Math., 19, No. 1, 25–53 (2001).

    MATH  MathSciNet  Google Scholar 

  56. M. Goto and K. Uesu, “Lie groups with left invariant metrics of nonnegative curvature,” Mem. Fac. Sci. Kyushu Univ. Ser. A. Math., 35, No. 1, 33–38 (1981).

    MATH  MathSciNet  Google Scholar 

  57. M. Goto and K. Uesu, “Left-invariant metrics on complex Lie groups,” Mem. Fac. Sci. Kyushu Univ. Ser. A. Math., 35, No. 1, 65–70 (1981).

    MATH  MathSciNet  Google Scholar 

  58. M. Goze, “Sur la classe des formes et systèmes invariants à gauche sur un groupe de Liem,” C. R. Acad. Sci. Paris, Sér. A, 283, 499–502 (1976).

    MATH  MathSciNet  Google Scholar 

  59. M. Goze, “Modèles d’algèbres de Lie frobeniusiennes,” C. R. Acad. Sci. Paris, Sér. I, Math., 293, No. 8, 425–427 (1981).

    MATH  MathSciNet  Google Scholar 

  60. M. Goze and Y. Khakimdjanov, Nilpotent Lie Algebras, Math. Appl., 361, Kluwer (1996).

  61. M. Goze, Y. Khakimdjanov, and A. Medina, “Symplectic or contact structures on Lie groups,” Differ. Geom. Appl., 21, No. 1, 41–54 (2004); arXiv:math/0205290v1 [math.DG].

    MATH  MathSciNet  Google Scholar 

  62. M. Goze and E. Remm, “Non-existence of complex structures on filiform Lie algebras,” Comm. Algebra, 30, No. 8, 3777–3788 (2002); arXiv:math/0103035v2 [math.RA].

    MATH  MathSciNet  Google Scholar 

  63. M. Goze and J. M. Ancochea Bermudez, “Classification des alg`ebres de Lie nilpotentes complexes de dimension 7,” Arch. Math., 52, No. 2, 175–185, (1989).

    MATH  MathSciNet  Google Scholar 

  64. M. Goze and A. Bouyakoub, “Sur les algèbres de Lie munies d’une forme symplectique,” Rend. Sem. Fac. Sci. Univ. Cagliari, 57, 85–97 (1987).

    MATH  MathSciNet  Google Scholar 

  65. J. W. Gray, A theory of pseudogroups with applications to contact structures, Thesis, Stanford Uni. (1957).

  66. M. L. Gromov, “Stable mappings of foliations in manifolds,” Izv. Akad. Nauk SSSR, Ser. Mat., 33, No. 4, 707–734 (1969).

    MATH  MathSciNet  Google Scholar 

  67. M. Gualtieri, Generalized Complex Geometry, D.Ph. thesis, Oxford (2003); arXiv:math.DG/0401221.

  68. J. Hano, “On Kählerian homogeneous spaces of unimodular Lie groups,” Am. J. Math., 79, 885–900 (1957).

    MATH  MathSciNet  Google Scholar 

  69. K. Hasegawa, “Minimal models of nilmanifolds,” Proc. Am. Math. Soc., 106, 65–71 (1989).

    MATH  Google Scholar 

  70. J. Heber, “Noncompact homogeneous Einstein spaces,” Invent. Math., 133, No. 2, 279–352 (1998).

    MATH  MathSciNet  Google Scholar 

  71. E. Heintze, “On homogeneous manifolds of negative curvature,” Math. Ann., 211, 23–34 (1974).

    MATH  MathSciNet  Google Scholar 

  72. N. Hitchin, “Hypersymplectic quotients,” Acta Acad. Sci. Tauriensis, 124, 169–180 (1990).

    Google Scholar 

  73. N. Hitchin, “Generalized Calabi–Yau manifolds,” Quart. J. Math. Oxford, 54, 281–308 (2003).

    MATH  MathSciNet  Google Scholar 

  74. D. D. Joyce, “Manifolds with many complex structures,” Quart. J. Math. Oxford, 46, 169–184 (1995).

    MATH  MathSciNet  Google Scholar 

  75. A. Kaplan, “On the geometry of groups of Heisenberg type,” Bull. London Math. Soc., 15, 35–42 (1983).

    MATH  MathSciNet  Google Scholar 

  76. G. Ketsetzis and S. Salamon, Complex structures on the Iwasawa manifold, preprint, arXiv:math/0112295v1 [math.DG].

  77. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2, Interscience Publ. New York–London (1963, 1969).

  78. E. S. Kornev, “Reducible almost complex structures on simply connected Lie groups of dimension 4,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., No. 1 (25), 39–42 (2006).

  79. E. S. Kornev, “Left-invariant almost complex structures and associated metrics on Lie groups of dimension 4,” Vestn. Novosib. Gos. Univ., Ser. Mat., No. 1, 33–58 (2007).

  80. E. S. Kornev, Almost Complex Structures and Metrics on Lie Groups of Dimension 4, Lambert Academic Publishing (2010).

  81. E. N. Korovin, “Left-invariant pseudo-K¨ahlerian structures on the nilpotent Lie group of type M7,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., No. 3 (35), 19–22 (2008).

  82. B. Kostant, “Quantization and unitary representation,” Lect. Notes Math., 170, 87–208 (1970).

    MathSciNet  Google Scholar 

  83. B. S. Kruglikov, “Symplectic and contact Lie algebras and their applications to the Monge–Ampere equation,” Tr. Mat. Inst. Steklova, 221, 232–246 (1998).

    MathSciNet  Google Scholar 

  84. A. Lichnerowicz, “Les groupes kählériens,” in: Symplectic Geometry and Mathematical Physics, Progr. Math., 99, Birkhäuser, Boston, MA (1991), pp. 245–259.

  85. A. Lichnerowicz and A. Medina, “On Lie groups with left-invariant symplectic or Kählerian structures,” Lett. Math. Phys., 16, No. 3, 225–235 (1988).

    MATH  MathSciNet  Google Scholar 

  86. J.-J. Loeb, M. Manjarin, and M. Nicolau, Complex and CR-structures on compact Lie groups associated to Abelian actions, preprint, arXiv:math/0610915v1 [math.DG] (2006).

  87. R. Lutz, “Quelques remarques historiques et prospectives sur la géométrie de contact,” Rend. Sem. Fac. Sci. Univ. Cagliari, 58, 361–393 (1988).

    MathSciNet  Google Scholar 

  88. L. Magnin, “Sur les algèbres de Lie nilpotentes de dimension ≤7,” J. Geom. Phys., 3, 119–144 (1986).

    MATH  MathSciNet  Google Scholar 

  89. L. Magnin, Technical report for complex structures on indecomposable 6-dimensional nilpotent real Lie algebras, preprint, http://monge.u-bourgogne.fr/lmagnin/sc1.ps (2004).

  90. L. Magnin, “Left-invariant complex structures on nilpotent simply connected indecomposable 6-dimensional real Lie groups,” Int. J. Algebra Comput., 17, No. 1, 115–139 (2007); http://monge.u-bourgogne.fr/lmagnin/artmagnin2.ps .

    MATH  MathSciNet  Google Scholar 

  91. L. Magnin, “Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras,” Int. J. Algebra Comput., 17, No. 1, 77–113 (2007); http://monge.u-bourgogne.fr/lmagnin/artmagnin1.ps .

    MATH  MathSciNet  Google Scholar 

  92. L. Magnin, Determination of 7-dimensional indecomposable nilpotent complex Lie algebras by adjoining a derivation to 6-dimensional Lie algebras: all 30 cases detailed, preprint, http://monge.u-bourgogne.fr/lmagnin/companionpaper.ps.

  93. L. Magnin, “Adjoint and trivial cohomology of complex 7-dimensional nilpotent Lie algebras,” Int. J. Math. Math. Sci., ID 805305 (2008); http://monge.u-bourgogne.fr/lmagnin/hindawiV2.ps.

  94. L. Magnin, Left-invariant complex structures on U(2) and SU(2) × SU(2) revisited, preprint, http://monge.u-bourgogne.fr/lmagnin/u2revisitedv2.ps.

  95. L. Magnin, Some remarks about the second Leibniz cohomology group for Lie algebras, preprint, http://monge.u-bourgogne.fr/lmagnin/artmagnin−leibniz.ps.

  96. L. Magnin, Two examples about zero torsion linear maps on Lie algebras, preprint, http://monge.u-bourgogne.fr/lmagnin/2examples.ps.

  97. A. I. Mal’cev, “On one class of homogeneous spaces,” Izv. Akad. Nauk SSSR, Ser. Mat., 13, No. 1, 9–32 (1949).

    MathSciNet  Google Scholar 

  98. Y. Matsushita, “Four-dimensional Walker metrics and symplectic structures,” J. Geom. Phys., 52, 89–99 (2004).

    MATH  MathSciNet  Google Scholar 

  99. C. McLaughlin, H. Pedersen, Y. S. Poon, and S. M. Salamon, Deformation of 2-step nilmanifolds with Abelian complex structures, preprint, arXiv:math/0402069v1 [math.DG].

  100. A. Medina, “Groupes de Lie munis de métriques bi-invariantes,” Tôhoku Math. J., 37, No. 4, 405–421 (1985)

    MATH  MathSciNet  Google Scholar 

  101. A. Medina and P. Revoy, “Algèbres de Lie et produit scalaire invariant,” Ann. Sci. École Norm. Super., 18, No. 3, 553–561 (1985).

    MATH  MathSciNet  Google Scholar 

  102. A. Medina and P. Revoy, “Groupes de Lie à structure symplectique invariante,” Math. Sci. Res. Inst. Publ., 20, 247–266 (1989).

    MathSciNet  Google Scholar 

  103. A. Medina and P. Revoy, “Groupes de Lie à structure symplectique invariante,” in: Symplectic Geometry, Grupoids and Integrable Systems. Sémin. Sud-Rhodanien de Géométrie (P. Dazord and A. Weinstein, eds.), Math. Sci. Res. Inst. Publ., Springer Verlag, New York–Berlin–Heidelberg (1991), pp. 247–266.

  104. I. Miatello Dotti, “Ricci curvature of left-invariant metrics on solvable unimodular Lie groups,” Math. Z., 180, 257–263 (1982).

    MATH  MathSciNet  Google Scholar 

  105. J. Milnor, “Curvatures of left invariant metrics on Lie groups,” Adv. Math., 21, No. 3, 293–329 (1976).

    MATH  MathSciNet  Google Scholar 

  106. A. Morimoto, “Structures complexes sur les groupes de Lie semi-simples,” C. R. Acad. Sci. Paris, 242, 1101–1103 (1956).

    MATH  MathSciNet  Google Scholar 

  107. V. Morozov, “A classification of nilpotent Lie algebra of sixth order,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., No. 4, 161–174 (1958).

  108. G. M. Mubarakzyanov, “On solvable Lie algebras,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., No. 1 (32), 114–123 (1963).

  109. G. M. Mubarakzyanov, “Classification of solvable Lie algebra of sixth order with one nonnilpotent basis element,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., No. 4 (35), 104–116 (1963).

  110. G. M. Mubarakzyanov, “Classification of real structures on Lie algebra of fifth order,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., No. 3 (34), 99–106 (1963).

  111. I. Nakamura, “Complex parallelizable manifolds and their small deformations,” J. Differ. Geom., 10, 85–112 (1975).

    MATH  Google Scholar 

  112. A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost complex manifolds,” Ann. Math., 65, 391–404 (1957).

    MATH  MathSciNet  Google Scholar 

  113. K. Nomizu, “On the cohomology of compact homogeneous spaces of nilpotent Lie groups,” Ann. Math., 59, 531–538 (1954).

    MATH  MathSciNet  Google Scholar 

  114. K. Nomizu, “Left-invariant Lorentz metrics on Lie groups,” Osaka J. Math., 16, No. 1, 143–150 (1979).

    MATH  MathSciNet  Google Scholar 

  115. G. Ovando, “Invariant complex structures on solvable real Lie groups,” Manuscr. Math., 103, 19–30 (2000).

    MATH  MathSciNet  Google Scholar 

  116. G. Ovando, “Complex, symplectic and Kähler structures on four-dimensional Lie groups,” Rev. Un. Mat. Argent., 45, No. 2, 55–68 (2004); arXiv:math/0309146v1 [math.DG].

    MATH  MathSciNet  Google Scholar 

  117. G. Ovando, “Invariant pseudo-Kähler metrics in dimension four,” J. Lie Theory, 16, No. 2, 371–391 (2006); arXiv:math/0410232v1 [math.DG].

    MATH  MathSciNet  Google Scholar 

  118. G. Ovando, “Four-dimensional symplectic Lie algebras,” Beiträge Alg. Geom., 47, No. 2, 419–434 (2006); arXiv:math/0407501v1 [math.DG].

    MATH  MathSciNet  Google Scholar 

  119. G. Ovando, Complex structures on tangent and cotangent Lie algebras of dimension six, preprint, arXiv:0805.2520v2 [math.DG] (2008).

  120. G. Ovando, Weak mirror symmetry of complex symplectic algebras, preprint, arXiv:1004.3264v1 [math.DG] (2010).

  121. A. P. Petravchuk, “Lie algebras decomposable into the sum of an Abelian subalgebra and a nilpotent subalgebra,” Ukr. Math. J., 40, No. 3, 331–334 (1988).

    MathSciNet  Google Scholar 

  122. H. Pittie, “The Dolbeault cohomology ring of a compact even-dimensional Lie group,” Proc. Indian Acad. Sci. Math. Sci., 98, 117–152 (1988).

    MATH  MathSciNet  Google Scholar 

  123. M. M. Postnikov, Lectures in Geometry. Semester V. Lie Groups and Lie Algebras [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  124. M. Raïs, “La représentation coadjointe du groupe affine,” Ann. Inst. Fourier, 28, No. 1, 207–237 (1978).

    MATH  MathSciNet  Google Scholar 

  125. E. Remm, Structures affines sur les algebres de Lie et operades Lie-admissibles, Thesis, Univ. Haute Alsace, Mulhouse France (2001); http://www.algebre.uha.fr/Remm/

  126. E. Remm, Affine structures on nilpotent contact Lie algebras, preprint, arXiv:math/0109077v3 [math.RA].

  127. S. Rollenske, Geometry of nilmanifolds with left-invariant complex structure and deformations in the large, preprint, arXiv:0901.3120 (2009).

  128. S. M. Salamon, “Harmonic 4-spaces,” Math. Ann., 269, 169–178 (1984).

    MATH  MathSciNet  Google Scholar 

  129. S. M. Salamon, “Complex structure on nilpotent Lie algebras,” J. Pure Appl. Algebra, 157, 311–333 (2011); arXiv:math/9808025v2 [math.DG].

    MathSciNet  Google Scholar 

  130. H. Samelson, “A class of complex analytic manifolds,” Portugal. Math., 12, 129–132 (1953).

    MATH  MathSciNet  Google Scholar 

  131. T. Sasaki, “Classification of invariant complex structures on SL(2, ℝ) and U(2),” Kumamoto J. Math., 14, 115–123 (1981).

    MATH  Google Scholar 

  132. T. Sasaki, “Classification of invariant complex structures on SL(3, ℝ),” Kumamoto J. Math., 15, 59–72 (1982).

    MATH  Google Scholar 

  133. Ya. V. Slavolyubova, “Left-invariant contact metric structures on the Heisenberg fivedimensional Lie group,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., No. 4 (28), 24–29 (2006).

  134. Ya. V. Slavolyubova, “Left-invariant contact metric structures on five-dimensional solvable Lie groups,” in: Proc. 7th Youth Sci. Conf. “Lobachevski Readings-2008,” Kazan, Izd. Kazan Univ. (2008), pp. 161–164.

  135. Ya. V. Slavolyubova, “Contact extensions of four-dimensional exact symplectic Lie groups,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., 4, No. 36, 20–24 (2008).

    Google Scholar 

  136. Ya. V. Slavolyubova, “Left-invariant contact metric structures on five-dimensional solvable Lie groups,” Vestn. Tomsk. Univ., Mat. Mekh., No. 3 (7), 56–63 (2009).

  137. Ya. V. Slavolyubova, Left-Invariant Contact Metric Structures on Lie Groups, Lambert Acad. Publ. (2011).

  138. N. K. Smolentsev, “Left-invariant pseudo-Kählerian structures on nilpotent Lie groups of type M1,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., 3, No. 35, 19–22 (2008).

    Google Scholar 

  139. N. K. Smolentsev, “Canonical pseudo-Kählerian metrics on six-dimensional nilpotent Lie groups,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., 3/1, No. 47, 155–168 (2011).

    Google Scholar 

  140. N. K. Smolentsev and E. N. Korovin, “Left-invariant pseudo-Kählerian structures on nilpotent Lie groups of type M3,” Vestn. Kemerovsk. Gos. Univ., Ser. Mat., 2, No. 34, 61–65 (2008).

    Google Scholar 

  141. D. M. Snow, “Invariant complex structures on reductive Lie groups,” J. Reine Angew. Math., 371, 191–215 (1986).

    MATH  MathSciNet  Google Scholar 

  142. J. E. Snow, “Invariant complex structures on four-dimensional solvable real Lie groups,” Manuscr. Math., 66, 397–412 (1990).

    MATH  MathSciNet  Google Scholar 

  143. J.-M. Souriau, Structure des systemes dynamiques, Maîtrises de mathematiques, Dunod, Paris (1970).

  144. P. Turkowski, “Solvable Lie algebras of dimension six,” J. Math. Phys., 31, 1344–1350 (1990).

    MATH  MathSciNet  Google Scholar 

  145. P. Turkowski, “Low-dimensional real Lie algebras,” J. Math. Phys., 29, 2139–2144 (1988).

    MATH  MathSciNet  Google Scholar 

  146. W. P. Thurston, “Some simple examples of symplectic manifolds,” Proc. Am. Math. Soc., 55, No. 2, 467–468 (1976).

    MATH  MathSciNet  Google Scholar 

  147. A. Tralle, “On solvable Lie groups without lattices,” Contemp. Math., 288, 437–441 (2001).

    MathSciNet  Google Scholar 

  148. A. Tralle and J. Oprea, Symplectic Manifolds with no Kähler Structure, Lect. Notes. Math., 1661, Springer-Verlag, Berlin–Heidelberg (1997).

  149. M. Vergne, “Cohomologie des algèbres de Lie nilpotentes,” Bull. Soc. Math. France, 98, 81–116 (1970).

    MATH  MathSciNet  Google Scholar 

  150. E. B. Vinberg, V. V. Gorbatsevich, and A. L. Onishchik, Structure of Lie Groups and Lie Algebras [in Russian], Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravl., 41, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1990).

  151. A. G. Walker, “Canonical form for a Riemannian space with a parallel field of null planes,” Quat. J. Math., 1. 69–79 (1950).

    MATH  Google Scholar 

  152. H. C. Wang, “Complex parallelizable manifolds,” Proc. Am. Math. Soc., 5, 771–776 (1954).

    MATH  Google Scholar 

  153. H. C. Wang, “Closed manifolds with homogeneous complex structure,” Am. J. Math., 76, 1–37 (1954).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Smolentsev.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 127, Geometry, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolentsev, N.K. Complex, Symplectic, and Contact Structures on Low-Dimensional Lie Groups. J Math Sci 207, 551–613 (2015). https://doi.org/10.1007/s10958-015-2385-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2385-6

Keywords

Navigation