Skip to main content
Log in

Fundamental Solution of the Simplest Implicit Linear Differential Equation in a Vector Space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study the simplest implicit linear inhomogeneous differential equation in an arbitrary vector space. We find the fundamental solution in the space of formal generalized functions and obtain a representation of a unique solution as the convolution of the fundamental solution and a given generalized function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  2. I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol I: Properties and Operations [in Russian] Fizmatgiz, Moscow (1959); English transl.: Academic Press, New York etc. (1964).

  3. I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol 2: Spaces of Fundamental and Generalized Functions [in Russian] Fizmatgiz, Moscow (1958); English transl.: Academic Press, New York etc. (1968).

  4. Yu. A. Dubinskii, The Cauchy Problem in a Complex Domain [in Russian], MPEI Press, Moscow (1996).

    Google Scholar 

  5. Yu. V. Egorov and M. A. Shubin, Foundations of the Classical Theory of Partial Differential Equations [in Russian], VINITI, Moscow (1987); English transl.: Springer, Berlin (1998).

    Book  Google Scholar 

  6. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967); English transl.: Am. Math. Soc., Providence, RI (1968).

  7. L. V. Hörmander, The Analysis of Linear Partial Differential Equations. 1. Distribution Theory and Fourier Analysis, Springer, Berlin (1990).

    Google Scholar 

  8. L. Schwartz, Théorie des distributions I, II, Hermann, Paris (1950).

    Google Scholar 

  9. M. V. Falaleev, “Fundamental operator-valued functions of singular differential operators in Banach spaces” [in Russian], Sib. Mat. Zh. 41, No. 5, 1167–1182 (2000); English transl.: Sib. Math. J. 41, No. 5, 960–973 (2000).

    Article  MathSciNet  Google Scholar 

  10. M. V. Falaleev and E. Yu. Grazhdantseva, “Fundamental operator-functions of degenerate differential and difference-differential operators in Banach spaces which have a Noether operator in the principal part” [in Russian], Sib. Mat. Zh. 46, No. 6, 1393–1406 (2005); English transl.: Sib. Math. J. 46, No. 6, 1123–1134 (2005).

    Article  MathSciNet  Google Scholar 

  11. A. V. Vershynina and S. A. Gefter, “On analytic solutions of the heat equation with an operator coefficient” [in Russian], Zap. Nauchn. Semin. POMI 355, 139–163 (2008); English transl.: J. Math. Sci., New York 156, No. 5, 799–812 (2009).

    Article  MATH  Google Scholar 

  12. P. Maroni, “Sur quelques espaces de distributions qui sont des formes lineaires sur l’espace vectoriel des polynˆomes,” Lect. Notes Math. 1171, 184–194 (1985).

    Article  MathSciNet  Google Scholar 

  13. S. M. Roman and G.-C. Rota, “The umbral calculus,” Adv. Math. 27, 95–188 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Estrada and R. P. Kanwal, A distributional approach to asymptotics theory and applications, Birkhaüser (2002).

  15. A. G. Rutkas, “Spectral methods for studying degenerate differential-operator equations. I” [in Russian], Sovrem. Mat. Pril. 35 (2005); English transl.: J. Math. Sci., New York 144, No. 4, 4246–4262 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker, New York etc. (1999).

  17. E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London (1975).

    MATH  Google Scholar 

  18. N. Bourbaki, Algebra II : Chapters 4–7. Springer (1990).

  19. I. Frenkel, J. Lepovsky, and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, New York (1988).

    MATH  Google Scholar 

  20. V. G. Kac, Vertex Algebras for Beginners, Am. Math. Soc., Providence, RI (1998).

  21. S. L. Gefter and T. E. Stulova, “On entire solutions of exponential type for some implicit linear differential-difference equation in a Banach space” [in Russian], Zap. Nauchn. Semin. POMI 416, 91–97 (2013); English transl.: J. Math. Sci., New York 202, No. 4, 541–545 (2014).

    Article  MATH  Google Scholar 

  22. S. L. Gefter and T. E. Stulova, “Vector differential–difference operators of infinite order in spaces of entire functions of exponential type” [in Russian], Probl. Mat. Anal. 74, 67–74 (2013); English transl.: J. Math. Sci., New York 196, No. 4, 515–523 (2014).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Gefter.

Additional information

Dedicated to Professor N. N. Uraltseva

Translated from Problemy Matematicheskogo Analiza 78, January 2015, pp. 47-55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gefter, S.L., Stulova, T.E. Fundamental Solution of the Simplest Implicit Linear Differential Equation in a Vector Space. J Math Sci 207, 166–175 (2015). https://doi.org/10.1007/s10958-015-2363-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2363-z

Keywords

Navigation