Skip to main content
Log in

To the theory of nonnegative point Hamiltonians on a plane and in the space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let Y be a countable set of points in d, d = 2, 3, such that d *(Y) := inf{|y − y′| : y, y′ ∈ Y, y ≠ y′} > 0. Using the connection between the Sobolev Space W 22 ( d) and the Hilbert space ℓ2, it is proved that the system of Dirac’s delta functions {δ(x − y), y ∈ Y, x ∈ Rd, d = 2, 3} forms the Riesz basis in its linear hull in W − 22 ( d). The properties of the Friedrichs and Krein extensions for a nonnegative symmetric operator A Y , d := −Δ:

$$ \mathrm{d}\mathrm{o}\mathrm{m}\left({A}_{Y,d}\right)=\left\{f\in {W}_2^2\left({\mathbb{R}}^d\right):f(y)=0,\;y\in Y\right\} $$

are studied. Boundary triplets for the operators A * Y,2 and A * Y,3 are constructed in a formally unified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. I. Achieser und I. M. Glasmann, Theorie der Linearen Operatoren im Hilbert-Raum, Akademie-Verlag, Berlin, 1981

    MATH  Google Scholar 

  2. M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New-York, 1972.

    Google Scholar 

  3. V. Adamyan, “Nonnegative perturbations of nononegative self-adjoint operators,” Meth. Funct. Anal. Topol., 13, No. 2, 103–109 (2007).

    MATH  MathSciNet  Google Scholar 

  4. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York, 1988.

    Book  MATH  Google Scholar 

  5. S. Albeverio, A. Kostenko, and M. Malamud, “Spectral theory of semibounded Sturm-Liouville operators with local interactions on a discrete set,” J. Math. Phys., 51, No. 10, 102102–102126 (2010).

    Article  MathSciNet  Google Scholar 

  6. Yu. M. Arlinskiĭ and E. R. Tsekanovskiĭ, “On the theory of non-negative selfadjoint extensions of a nonnegative symmetric operator,” Dopov. Nats. Akad. Nauk Ukrainy, No. 11, 30–37 (2002).

  7. Yu. M. Arlinskiĭ and E. R. Tsekanovskiĭ, “The von Neumann problem for nonnegative symmetric operators,” Integr. Equa. and Oper. Theory, 53, 315–356 (2005).

    Google Scholar 

  8. Yu. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators, Amer. Math. Soc., Providence, RI, 1969.

  9. F. A. Berezin and L. D. Faddeev, “The remark on the Schr¨odinger equation with singular potential,” Dokl. Akad. Nauk SSSR, 137, No. 5, 1011–1014 (1967).

    MathSciNet  Google Scholar 

  10. V. M. Bruk, “On a class of boundary-value problems with spectral parameter in the boundary condition,” Mat. Sbor., 100, No. 2, 210–216 (1976).

    MathSciNet  Google Scholar 

  11. V. A. Derkach and M. M. Malamud, “Generalized resolvents and the boundary-value problems for Hermitian operators with gaps,” J. Funct. Anal., 95, 1–95 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. A. Derkach and M. M. Malamud, “The extension theory of Hermitian operators and the moment problem,” J. Math. Sci., 73, 141–242 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  13. V. A. Derkach, M. M. Malamud, and E. R. Tsekanovskiĭ, “Sectorial extensions of a positive operator and a characteristic function,” Ukr. Mat. Zh., 41, No. 2, 151–158 (1989).

    Article  MATH  Google Scholar 

  14. F. Gesztesy, N. Kalton, K. Makarov, and E. Tsekanovskiĭ, “Some aplications of operator-valued Herglotz functions,” Oper. Theory, Adv. Appl., 123, 271–321 (2001).

    Google Scholar 

  15. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators, Amer. Math. Soc., Providence, RI, 1969.

  16. N. Goloschapova, “Multi-dimensional Schr¨odinger operators with point interactions,” Meth. Funct. Anal. Topol., 17, No. 2, 126–143 (2011).

    Google Scholar 

  17. N. Goloshchapova, M. Malamud, and V. Zastavnyi, “Radial positive definite functions and spectral theory of the Schrödinger operators with point interactions,” Math. Nachr., 285, Nos. 14–15, 1839–1859 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  18. N. I. Goloshchapova and L. L. Oridoroga, “The one-dimensional Schr¨odinger operator with the point δ- and δ'-interactions,” Matem. Zam., 84, 127–131 (2008).

    Article  MathSciNet  Google Scholar 

  19. N. I. Goloshchapova, V. P. Zastavnyi, and M. M. Malamud, “Positive definite functions and spectral properties of the Schr¨odinger operator with point interactions,” Matem. Zam., 90, 151–156 (2011).

    Article  MathSciNet  Google Scholar 

  20. M. L. Gorbachuk and V. I. Gorbachuk, Boundary-Value Problems for Differential-Operator Equations [in Russian], Naukova Dumka, Kiev, 1984.

    Google Scholar 

  21. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Acad. Press, New York, 1980.

    Google Scholar 

  22. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995.

    MATH  Google Scholar 

  23. A. N. Kochubei, “On the extensions of symmetric operators and symmetric binary relations,” Matem. Zam., 17, No. 1, 41–48 (1975).

    Google Scholar 

  24. A. N. Kochubei, “One-dimensional point interactions,” Ukr. Mat. Zh., 41, No. 10, 90–95 (1989).

    Article  Google Scholar 

  25. A. Kostenko and M. Malamud, “1-D Schr¨odinger operators with local point interactions on a discrete set,” J. Diff. Equa., 249, 253–304 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  26. V. D. Koshmanenko, Singular Bilinear Forms in the Theory of Perturbations of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev, 1993.

    Google Scholar 

  27. Yu. G. Kovalev, “1-D nonnegative Schr¨odinger operators with point interactions,” Mat. Stud., 39, No. 2, 150–163 (2013).

    MATH  MathSciNet  Google Scholar 

  28. Yu. G. Kovalev, “Nonnegative 2D Hamiltonians for point interactions,” Vestn. VNU im. V. Dalya, 150, No. 8, 150–159 (2010).

    Google Scholar 

  29. M. G. Krein, “The theory of self-adjoint extensions of semibounded Hermitian operators and its applications,” Mat. Sbor., 20, No. 3, 431–495 (1947).

    MathSciNet  Google Scholar 

  30. M. M. Malamud, “On some classes of extensions of a Hermitian operator with gaps,” Ukr. Mat. Zh., 44, No. 2, 215–234 (1992).

    Article  MathSciNet  Google Scholar 

  31. M. M. Malamud and K. Schmüdgen, “Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions,” J. of Funct. Anal., 263, 3144—3194 (2012).

    Article  MATH  Google Scholar 

  32. V. A. Mikhailets, “Spectral properties of the one-dimensional Schrödinger operator with point intersections,” Rep. on Math. Phys., 36, Nos. 2–3, 495–500 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  33. V. A. Mikhailets, “The one-dimensional Schrödinger operator with point interactions,” Dokl. Ross. Akad. Nauk, 49, 345–349 (1994).

    MathSciNet  Google Scholar 

  34. M. I. Vishik, “On general boundary-value problems for elliptic differential equations,” Trudy Mosk. Mat. Obshch., 1, 187–246 (1952).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Kovalev.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 11, No. 2, pp. 203–226, April–May, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, Y. To the theory of nonnegative point Hamiltonians on a plane and in the space. J Math Sci 204, 315–332 (2015). https://doi.org/10.1007/s10958-014-2204-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2204-5

Keywords

Navigation