Skip to main content
Log in

Extreme Values of Automorphic L-Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Ω-theorems for some automorphic L-functions and, in particular, for the Rankin−Selberg L-function L(s, f × f) are considered. For example, as t tends to infinity,

$$ \log \left| {L\left( {\frac{1}{2}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{1/2 }}} \right) $$

and

$$ \log \left| {L\left( {{\sigma_0}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{{1-{\sigma_0}}}}} \right) $$

For a fixed σ 0\( \left( {\frac{1}{2},1} \right) \). Bibliography: 15 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed., revised by D. R. Heath-Brown, New York (1986).

  2. K. Ramachandra, “On the frequency of Titchmarsh’s phenomenon for ς(s),” J. London Math. Soc. (2), 8, 683–690 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Balasubramanian and K. Ramachandra, “On the frequency of Titchmarsh’s phenomenon ς(s). III,” Proc. Indian Acad. Sci., 86A, 341–351 (1977).

    MathSciNet  Google Scholar 

  4. N. Levinson, “Ω-theorems for the Riemann zeta-function,” Acta Arithm., 20, 317–330 (1972).

    MathSciNet  MATH  Google Scholar 

  5. H. L. Montgomery, “Extreme values of the Riemann zeta-function,” Comment. Math. Helv., 52, 511–518 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Soundararajan, “Extreme values of zeta and L-functions,” Math. Ann., 342, 467–486 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  7. O. M. Fomenko, “Fractional moments of automorphic L-functions. II,” Zap. Nauchn. Semin. POMI, 383, 179–192 (2010).

    MathSciNet  Google Scholar 

  8. K. Matsumoto, “Liftings and mean value theorems for automorphic L-functions,” Proc. London Math. Soc. (3), 90, 297–320 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. M. Fomenko, “Fractional moments of automorphic L-functions,” Algebra Analiz, 22, No. 2, 204–224 (2010).

    MathSciNet  Google Scholar 

  10. A. Ivić, The Riemann Zeta-Function, New York (1985).

  11. A. Sankaranarayanan and J. Sengupta, “Omega theorems for a class of L-functions (A note on the Rankin−Selberg zeta-function),” Funct. Approx. Comment. Math., 36, 119–131 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms,” in: Proceeding of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Salerno (1992), pp. 231–246.

  13. J. W. S. Cassels and A. Frölich, Eds., Algebraic Number Theory, Academic Press (1990).

  14. M. Koike, “Higher reciprocity law, modular forms of weight 1, and elliptic curves,” Nagoya Math. J., 98, 109–115 (1985).

    MathSciNet  MATH  Google Scholar 

  15. C. J. Moreno, “The Hoheisel phenomenon for generalized Dirichlet series,” Proc. Amer. Math. Soc., 40, 47–51 (1973).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Fomenko.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 404, 2012, pp. 233–247.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomenko, O.M. Extreme Values of Automorphic L-Functions. J Math Sci 193, 136–144 (2013). https://doi.org/10.1007/s10958-013-1442-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1442-2

Navigation