Skip to main content
Log in

Projective analog of Egorov transformation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We prove the following assertion, which is a projective analog of the well-known Egorov theorem on surfaces in the Euclidean space: a family of lines v = const on a surface S in P 3 is a basis for Egorov transformation if and only if the surface bands defined on S by these lines belong to bilinear systems of plane elements. There exist a whole set of Egorov transformations that depend on one function of v with this family of lines as the basis of the correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, Additions to the Theory of Ordinary Differential Equations [in Russian], Moscow (1978).

  2. V. Ya. Berkutsky, “E-transformations and Egorov transformations in three-dimensional quasi-non-Euclidean spaces,” Geom. Sb., 21, 45–54 (1981).

    Google Scholar 

  3. W. Blaschke, “ Über affine Kinematik,” in: Leonhard Euler 250. Geburstag, Akademie, Berlin (1959), pp. 42–48.

    Google Scholar 

  4. O. Bottema and G. R. Veldkamp, “Instantane projective und affine Kinematik,” Sitzungsber. Osterr. Akad. Wiss. Math.-Naturwiss. Kl., Abt. II 2a, 188, No. 1–3, 119–141 (1979).

    MathSciNet  MATH  Google Scholar 

  5. D. F. Egoroff, “Sur les surfacea, engendrees par la distribution des lignes d’une famille donnee,” Math. Coll., 31, 153–184 (1924).

    Google Scholar 

  6. A. P. Erokhina, “On Egorov transformations in theory of surfaces,” in: Abstracts II West-Sib. Sci. Conf. on Math. Mech. [in Russian], Tomsk (1972), p. 62.

  7. F. R. Gantmacher, The Theory of Matrices, Amer. Math. Soc. (2000).

  8. R. N. Scherbakov, “On surfaces formation by lines,” Usp. Mat. Nauk, 8, No. 2, 147–156 (1953). Corrections to paper, Usp. Mat. Nauk, 12, No. 1, 259–261 (1957).

  9. R. N. Scherbakov, “Egorov transformations in theory of line congruences,” in: Proc. III All-Union Math. Congress [in Russian], Vol. 1 (1956), pp. 176–177.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Akivis.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 16, No. 1, pp. 3–12, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akivis, M.A. Projective analog of Egorov transformation. J Math Sci 177, 515–521 (2011). https://doi.org/10.1007/s10958-011-0476-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0476-6

Keywords

Navigation