Skip to main content
Log in

Asymptotic approximations for solutions to quasilinear and linear parabolic problems with different perturbed boundary conditions in perforated domains

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider quasilinear and linear parabolic problems with rapidly oscillating coefficients in a domain Ω ε that is ε-periodically perforated by small holes of order

. The holes are divided into three ε-periodical sets depending on boundary conditions. The homogeneous Dirichlet boundary conditions are imposed for holes of one set, whereas, for holes in the remaining sets, different inhomogeneous Neumann and nonlinear Robin boundary conditions involving additional perturbation parameters are imposed. For a solution to the quasilinear problem we find the leading terms of the asymptotic expansion and prove asymptotic estimates that show the influence of perturbation parameters. In the linear case, we construct and justify a complete asymptotic expansion of the solution by using the two-scale asymptotic expansion method. Bibliography: 25 titles. Illustrations: 1 figure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Marchenko and E. Ya. Khruslov, “Boundary-value problems with fine-grained boundary” [in Russian], Mat. Sb. 65, No. 3, 458–472 (1964).

    MathSciNet  Google Scholar 

  2. D. Cioranescu and F. Murat, “Un terme etrange venu d’ailleurs,” In: Nonlinear Partial Differential Equations and their Applications, pp. 98–138, Pitman, Boston (1982).

    Google Scholar 

  3. T. A. Mel’nyk and O. A. Sivak, “Asymptotic approximations for solutions to quasilinear and linear elliptic problems with different perturbed boundary conditions in perforated domains,” Asymptotic Anal. DOI 10.3233/ASY-2011-1055 (2011).

  4. E. Ya. Khruslov and Z. F. Nazyrov, “Perturbation of the thermal field of moving small particles” [in Russian], In: Studies in the Theory of Operators and Their Applications, pp. 49–65, Naukova Dumka, Kiev (1979).

  5. V. A. Marchenko and E. Ya. Khruslov, Homogenization of Partial Differential Equations, Birkhauser, Basel (2006).

    MATH  Google Scholar 

  6. I. V. Skrypnik and S. A. Lamonov, “The first boundary value problem for quasilinear parabolic equations in domains with a fine-grained boundary” [in Russian], Dokl. Akad. Nauk Ukr. SSR, Ser. A 4, 25–28 (1984).

    MathSciNet  Google Scholar 

  7. L. V. Berlyand and M. V. Goncharenko, “Homogenization of the diffusion equation in porous structure with absorptions” [in Russian], Teor. Funkts. Funk. Anal. Pril. (Izd-vo Kharkov Univ.) 52, 112–121 (1989).

    Google Scholar 

  8. L. S. Pankratov, “Homogenization of quasilinear parabolic equations in weakly connected domains” [in Russian], Dokl. Akad. Nauk Ukr. SSR, Ser. A 4, 25–28 (1995).

    Google Scholar 

  9. S. Migorski, “Homogenization of hyperbolic-parabolic equations in perforated domains,” Univ. Iagel. Acta Math. 33, 59–72 (1996).

    MathSciNet  Google Scholar 

  10. A. K. Nandakumaran and M. Rajesh, “Homogenization of a parabolic equation in perforated domain with Dirichlet boundary condition,” Proc. Indian Acad. Sci. Math. Sci. 112, 425–439 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. K. Nandakumaran and M. Rajesh, “Homogenization of a parabolic equation in perforated domain with Neumann boundary condition,” Proc. Indian Acad. Sci. Math. Sci. 112, 195–207 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Calvo-Jurado and J. Casado-Diaz, “Homogenization of Dirichlet parabolic systems with variable monotone operators in general perforated domains,” Proc. R. Soc. Edinb., Sect. A, Math. 133, No. 6, 1231–1248 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. O. A. Matevosyan and I. V. Filimonova, “On the homogenization of semilinear parabolic operators in a perforated cylinder” [in Russian], Mat. Zametki 78, No. 3, 396–408 (2005); English transl.: Math. Notes 78, No. 3–4, 364–374 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. A. Shaposhnikova and M. N. Zubova, “Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain,” Netw. Heterog. Media 3, No. 3, 675–689 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Jäger, M. Neuss-Radu, and T. A. Shaposhnikova, “Homogenization limit for the diffusion equation with nonlinear flux condition on the boundary of very thin holes periodically distributed in a domain, in case of a critical size” [in Russian], Dokl. Akad. Nauk., Ross. Akad. Nauk. 434, No. 3, 299–303 (2010); English transl.: Dokl. Math. 82, No. 2, 736–740 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. L. Lions, “Asymptotic expansions in perforated media with a periodic structure,” Rocky Mt. J. Math. 10, 125–140 (1980).

    Article  MATH  Google Scholar 

  17. V. V. Jikov (Zhikov), S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators [in Russian], Nauka, Moscow (1993); English transl.: Springer, Berlin (1994).

    Google Scholar 

  18. O. A. Oleinik, G. A. Yosifian, and A. S. Shamaev, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam (1992).

    Google Scholar 

  19. T. A. Mel’nyk, Some Spectral Problems of Homogenization Theory [in Russian], PhD Thesis, Moscow (1989).

  20. T. A. Mel’nik, “Asymptotic expansions of eigenvalues and eigenfunctions for elliptic boundary-value problems with rapidly oscillating coefficients in a perforated cube” [in Russian], Tr. Semin. Im. Petrovskogo 17, 51–88 (1994); English transl.: J. Math. Sci., New York 75, No. 3, 1646–1671 (1995).

    Article  MathSciNet  Google Scholar 

  21. T. A. Shaposhnikova, “The asymptotic expansion of the solution to the Cauchy problem for a parabolic equation in a perforated space” [in Russian], Tr. Semin. Im. Petrovskogo 19, 109–137 (1996); English transl.: J. Math. Sci., New York 85 No. 6, 2308–2325 (1997).

    Article  MathSciNet  Google Scholar 

  22. T. A. Mel’nyk and A. V. Popov, “Asymptotic approximations for solutions to parabolic boundary value problems in thin perforated domains with rapidly varying thickness” [in Russian], Probl. Mat. Anal. 42, 43–65 (2009); English transl.: J. Math. Sci., New York 162, No 3, 348–373 (2009).

    Article  Google Scholar 

  23. P. Donato and A. Nabil, “Homogenization of semilinear parabolic equations in perforated domains,” Chin. Ann. Math., Ser. B 25, No. 2, 143–156 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Donato and A. Nabil, “Homogenization and correctors for the heat equation in perforated domains,” Ric. Mat. 50, No. 1, 114–144 (2001).

    MathSciNet  Google Scholar 

  25. T. A. Mel’nyk and O. A. Sivak, “Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain” [in Russian], Probl. Mat. Anal. 43, 107–18 (2009); English transl.: J. Math. Sci., New York 164, No 3, 427–454 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Mel’nik.

Additional information

Dedicated to Professor V. V. Zhikov on the occasion of his 70th birthday

Translated from Problems in Mathematical Analysis 59, July 2011, pp. 43–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mel’nik, T.A., Sivak, O.A. Asymptotic approximations for solutions to quasilinear and linear parabolic problems with different perturbed boundary conditions in perforated domains. J Math Sci 177, 50–70 (2011). https://doi.org/10.1007/s10958-011-0447-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0447-y

Keywords

Navigation