Skip to main content
Log in

The linking set problem: a polynomial special case of the multiple-choice knapsack problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider the linking set problem, which can be seen as a particular case of the multiple-choice knapsack problem. This problem occurs as a subproblem in a decomposition procedure for solving large-scale p-median problems such as the optimal diversity management problem. We show that if a non-increasing diference property of the costs in the linking set problem holds, then the problem can be solved by a greedy algorithm and the corresponding linear gap is null.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Agra, D. Cardoso, J. Cerdeira, M. Miranda, and E. Rocha, “The minimum weight spanning star forest model of the optimal diversity management problem,” Cadernos de Matemática, Universidade de Aveiro, CM07(I-08) (2007).

  2. A. Agra and C. Requejo, “On the Linking set problem,” Cadernos de Matemática, Universidade de Aveiro, CM07 (2007).

  3. E. H. Aghezzaf, T. L. Magnanti, and L. A. Wolsey, “Optimizing constrained subtrees of trees,” Math. Program., 71, 113–126 (1995).

    MathSciNet  Google Scholar 

  4. P. Avella, M. Boccia, C. D. Martino, G. Oliviero, and A. Sforza, “A decomposition approach for a very large scale optimal diversity management problem,” Oper. Res., 3, No. 1, 23–37 (2005).

    MATH  Google Scholar 

  5. D. Babayev, “Comments on a note of Frieze,” Math. Program., 7, 249–252 (2005).

    Article  MathSciNet  Google Scholar 

  6. O. Briant, Étude Théorique et Numérique du Problème de la Qestion de la Diversité, PhD Thesis, Institut National Polytechnique de Grenoble (2000).

  7. O. Briant and D. Naddef, “The optimal diversity management problem,” Oper. Res., 52, No. 4, 515–526 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Cardoso and J. Cerdeira, “Minimum weight t-composition of an integer,” Cadernos de Matemática, Universidade de Aveiro (2007).

  9. K. Dudzinski and S. Waluckiewicz, “A fast algorithm for the linear multiple-choice knapsack problem,” Oper. Res. Lett., 3, 205–209 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Fisher, G. Nemhauser, and L. Wolsey, “An analysis of approximations for maximizing submodular set functions. II,” Math. Program. Study, 8, 73–87 (1978).

    MathSciNet  Google Scholar 

  11. A. Frieze, “A cost function property for plant location problems,” Math. Program., 7, 245–248 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Jarvinen, J. Rajala, and H. Sinervo, “A branch and bound algorithm for seeking the p-median, Oper. Res., 20, 173–178 (1972).

    Article  Google Scholar 

  13. O. Kariv and S. Hakini, “An algorithmic approach to network location problems. Part 1. The p-centers,” SIAM J. Appl. Math., 37, 513–538 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer, Berlin (2004).

    MATH  Google Scholar 

  15. E. L. Lawler, “Fast approximation algorithms for knapsack problems,” Math. Oper. Res., 4, 339–356 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley (1990).

  17. K. Martin, “Generating alternative mixed-integer programming models using variable redefinition,” Oper. Res., 35, 820–831 (1978).

    Article  Google Scholar 

  18. P. Mirchandani and R. Francis, Discrete Location Theory, Wiley (1990).

  19. D. Pisinger, “A minimal algorithm for the multiple-choice knapsack problem,” Eur. J. Oper. Res., 83, 394–410 (1995).

    Article  MATH  Google Scholar 

  20. J. Reese, “Solution methods for the p-median problem: an annotated bibliography,” Networks, 125–142 (2006).

  21. K. Spielberg, “Plant location with generalized search origin,” Management Sci., 16, 165–178 (1969).

    Article  Google Scholar 

  22. B. You and T. Yamada, “A pegging approach to the precedence-constrained knapsack problem,” European J. Oper. Res., 183, 618–632 (2007).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Agra.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 63, Optimal Control, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agra, A., Requejo, C. The linking set problem: a polynomial special case of the multiple-choice knapsack problem. J Math Sci 161, 919–929 (2009). https://doi.org/10.1007/s10958-009-9612-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9612-y

Keywords

Navigation