Skip to main content
Log in

Integrable systems of chiral type

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We present new integrable systems close to the WZNW systems (Wess-Zumino-Novikov-Witten) and to the nonabelian affine Toda systems. One of the systems is a new integrable generalization of the sine-Gordon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Balandin, “On a system of differential equations admitting a representation of zero curvature,” Usp. Mat. Nauk, 45, No. 6, 125–126 (1990).

    MathSciNet  Google Scholar 

  2. A. V. Balandin, O. N. Pakhareva, and G. V. Potemin, “Lax representation of the chiral-type field equations,” Phys. Lett. A, 283, Nos. 3–4, 168–176 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bilal, “Non-abelian Toda theory: a completely integrable model for strings on a black hole background,” Nucl. Phys. B, 422, Nos. 1–2, 258–288 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. D. K. Demskoi and A. G. Meshkov, “Zero-curvature representation for a chiral-type three-field system,” Inverse Probl., 19, No. 3, 563–571 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. K. Demskoi and A. G. Meshkov, “Lax representation for triplets of scalar fields,” Teor. Mat. Fiz., 134, No. 3, 401 (2003).

    MathSciNet  Google Scholar 

  6. R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, “String propagation in a black hole geometry,” Nucl. Phys. B, 371, 269–314 (1992).

    Article  MathSciNet  Google Scholar 

  7. K. Gawedzki and A. Kupiainen “G/H conformal field theory from gauged WZW model,” Phys. Lett. B, 215, 119–123 (1988).

    Article  MathSciNet  Google Scholar 

  8. B. S. Getmanov, “On a two-dimensional, integrable, Lorentz-invariant nonlinear model of a complex-valued scalar field,” Teor. Mat. Fiz., 48, No. 1, 13–23.

  9. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math., 80 (1978).

  10. T. J. Hollowood, J. L. Miramontes, and Q. Han Park, “Massive integrable soliton theories,” Nucl. Phys. B, 445, 451–468 (1995).

    Article  MATH  Google Scholar 

  11. A. N. Leznov and M. V. Saveliev, “Two-dimensional exactly and completely integrable dynamical systems. Monopoles, instantons, dual models, relativistic strings, Lund-Regge model, generalized Toda lattice, etc.,” Commun. Math. Phys., 89, No. 1, 59–75 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. P. Novikov, “The Hamiltonian formalism and a multi-valued analogue of the Morse theory,” Usp. Mat. Nauk, 37, No. 5, 3–49 (1982).

    Google Scholar 

  13. V. V. Trofimov, Introduction to the Geometry of Manifolds with Symmetries [in Russian], Moscow (1989).

  14. J. Wess and B. Zumino, “Consequences of anomalous ward identities,” Phys. Lett. B, 37, 95–97 (1971).

    Article  MathSciNet  Google Scholar 

  15. E. Witten, “Nonabelian bosonization in two dimensions,” Commun. Math. Phys., 92, 455–472 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Witten, “On string theory and black holes,” Phys. Rev. D, 44, 314–324 (1991).

    Article  MathSciNet  Google Scholar 

  17. E. V. Zakharov and A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method,” Zh. Eksp. Teor. Fiz., 74, 1953–1973 (1978).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Balandin.

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 12, No. 7, pp. 5–21, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balandin, A.V., Kashcheeva, O.N. Integrable systems of chiral type. J Math Sci 151, 3070–3082 (2008). https://doi.org/10.1007/s10958-008-9033-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9033-3

Keywords

Navigation