Skip to main content
Log in

Generalized Multilinear Games and Vertical Tensor Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper generalizes the multilinear game where the payoff tensor of each player is fixed to the generalized multilinear game where the payoff tensor of each player is selected from a nonempty set of tensors. We prove the existence of \(\varepsilon \)-Nash equilibria for generalized multilinear games under the assumption that all involved sets of tensors are bounded, and the existence of Nash equilibria for generalized multilinear games under the assumption that all involved sets of tensors are compact. In particular, when all involved sets of tensors are finite, we show that finding a Nash equilibrium point for the generalized multilinear game is equivalent to solving a vertical tensor complementarity problem, and establish a one-to-one correspondence between the Nash equilibrium point of the game and the solution of the vertical tensor complementarity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumann, R.J., Hart, S.: Handbook of Game Theory With Economic Applications. North-Holland, Amsterdam (1992)

    Google Scholar 

  2. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. Academic Press, San Diego (1995)

    Google Scholar 

  3. Bomze, I.M.: Non-cooperative two-person games in biology: a classification. Int. J. Game Theory 15(1), 31–57 (1986)

    Article  Google Scholar 

  4. Che, M., Qi, L., Wei, Y.: The generalized order tensor complementarity problems. Numer. Math. Theor. Meth. Appl. 13(1), 131–149 (2020)

    Article  MathSciNet  Google Scholar 

  5. Chen, C., Zhang, L.: Finding Nash equilibrium for a class of multi-person noncooperative games via solving tensor complementarity problem. Appl. Numer. Math. 145, 458–468 (2019)

    Article  MathSciNet  Google Scholar 

  6. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory. 8(1), 79–90 (1970)

    Article  MathSciNet  Google Scholar 

  7. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    Google Scholar 

  8. Dutta, A., Das, A.K.: Homotopy continuation method for discounted zero-sum stochastic game with ARAT structure. Int. Game Theory Rev. 25(03), 1–18 (2023). https://doi.org/10.1142/S0219198923400042

    Article  MathSciNet  Google Scholar 

  9. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010)

    Article  MathSciNet  Google Scholar 

  10. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  11. Gowda, M.S., Sznajder, R.: A generalization of the Nash equilibrium theorem on bimatrix games. Int. J. Game Theory 25(1), 1–12 (1996)

    Article  MathSciNet  Google Scholar 

  12. Han, J.Y., Xiu, N.H., Qi, H.D.: Nonlinear Complementarity Theory and Algorithm. Shanghai Science and Technology Press, Shanghai (2006). ((in Chinese))

    Google Scholar 

  13. Howson, J.T., Jr.: Equilibria of polymatrix games. Manage. Sci. 18(5), 312–318 (1972)

    Article  MathSciNet  Google Scholar 

  14. Hu, M., Fukushima, M.: Existence, uniqueness, and computation of robust Nash equilibrium in a class of multi-leader-follower games. SIAM J. Optim. 23, 894–916 (2013)

    Article  MathSciNet  Google Scholar 

  15. Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)

    Article  MathSciNet  Google Scholar 

  16. Huang, Z.H., Qi, L.: Tensor complementarity problems - part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  17. Huang, Z.H., Qi, L.: Tensor complementarity problems - part III: applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  19. Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manage. Sci. 11(7), 681–689 (1965)

    Article  MathSciNet  Google Scholar 

  20. Lemke, C.E., Howson, J.T., Jr.: Equilibrium points of bimatrix games. SIAM J. Appl. Math. 12(2), 413–423 (1964)

    Article  MathSciNet  Google Scholar 

  21. Lloyd, N.: Degree Theory. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  22. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. J. Math. Anal. Appl. 9, 348–355 (1964)

    Article  MathSciNet  Google Scholar 

  23. Meng, R., Huang, Z.H., Wang, Y.: Existence of the least element solution of the vertical block \(Z\)-tensor complementarity problem. Optim. Lett. 17, 1697–1709 (2023)

    Article  MathSciNet  Google Scholar 

  24. Mohan, S.R., Neogy, S.K.: Generalized linear complementarity in a problem of \(n\)-person games. OR Spektrum. 18, 231–239 (1996)

    Article  MathSciNet  Google Scholar 

  25. Nash, J.F.: Equilibrium points in \(N\)-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)

    Article  MathSciNet  Google Scholar 

  26. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  28. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, London (1994)

    Google Scholar 

  29. Peng, J.M., Lin, L.: A non-interior continuation method for generalized linear complementarity problems. Math. Program. 86, 533–563 (1999)

    Article  MathSciNet  Google Scholar 

  30. Qi, H.D., Liao, L.Z.: A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl. 21(1), 45–66 (1999)

    Article  MathSciNet  Google Scholar 

  31. Qi, L., Huang, Z.H.: Tensor complementarity problems - part II: solution methods. J. Optim. Theory Appl. 183(2), 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  32. Rosenmüller, J.: On a generalization of the Lemke-Howson algorithm to noncooperative \(n\)-person games. SIAM J. Appl. Math. 21(1), 73–79 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express the gratitude to the associate editor and referees for their valuable comments and advice. The authors were partially supported by the National Natural Science Foundation of China (Grant Nos. 12171357 and 12371309)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Communicated by Francesco Zirilli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Huang, ZH. & Wang, Y. Generalized Multilinear Games and Vertical Tensor Complementarity Problems. J Optim Theory Appl 200, 602–633 (2024). https://doi.org/10.1007/s10957-023-02360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02360-8

Keywords

Mathematics Subject Classification

Navigation