Skip to main content
Log in

An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Smoothing Newton methods, which usually inherit local quadratic convergence rate, have been successfully applied to solve various mathematical programming problems. In this paper, we propose an accelerated smoothing Newton method (ASNM) for solving the weighted complementarity problem (wCP) by reformulating it as a system of nonlinear equations using a smoothing function. In spirit, when the iterates are close to the solution set of the nonlinear system, an additional approximate Newton step is computed by solving one of two possible linear systems formed by using previously calculated Jacobian information. When a Lipschitz continuous condition holds on the gradient of the smoothing function at two checking points, this additional approximate Newton step can be obtained with a much reduced computational cost. Hence, ASNM enjoys local cubic convergence rate but with computational cost only comparable to standard Newton’s method at most iterations. Furthermore, a second-order nonmonotone line search is designed in ASNM to ensure global convergence. Our numerical experiments verify the local cubic convergence rate of ASNM and show that the acceleration techniques employed in ASNM can significantly improve the computational efficiency compared with some well-known benchmark smoothing Newton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. [39, Lemma 2.6]: Let \(a,b\in {\textbf{V}}\) with \(a\succ _{{\textbf{K}}}0, b\succ _{{\textbf{K}}}0\) and \(a\circ b\succ _{{\textbf{K}}}0.\) Then for all \(u,v\in {\textbf{V}}\) satisfying \(\langle u,v\rangle \ge 0\) and \(a\circ u+b\circ v=0\), we have \(u=v=0\).

References

  1. Asadi, S., Darvay, Z., Lesaja, G., Mahdavi-Amiri, N., Potra, F.A.: A full-Newton step interior-point method for monotone weighted linear complementarity problems. J. Optim. Theory Appl. 186, 864–878 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Chen, J.-S., Pan, S.H.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 8, 33–74 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Chi, X.N., Wei, H.J., Wan, Z.P., Zhu, Z.B.: Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search. Acta Math. Scientia 37B(5), 1262–1280 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Chi, X.N., Gowda, M.S., Tao, J.: The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra. J. Glob. Optim. 73, 153–169 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Chi, X.N., Wan, Z.P., Hao, Z.J.: A full-modified-Newton step \(O(n)\) infeasible interior-point method for the special weighted linear complementarity problem. J. Ind. Manag. Optim. 18(4), 2579–2598 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Chi, X.N., Wang, G.Q.: A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem. J. Optim. Theory Appl. 190, 108–129 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Engelke, S., Kanzow, C.: Improved smoothing-type methods for the solution of linear programming. Numer. Math. 90, 487–507 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Faraut, J., Kor\(\acute{{a}}\)nyi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press, New York (1994)

  9. Gowda, M.S.: Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras. J. Global Optim. 74, 285–295 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Huang, Z.H., Gu, W.Z.: A smoothing-type algorithm for solving linear complementarity problems with strong convergence properties. Appl. Math. Optim. 57, 17–29 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Huang, Z.H., Zhang, Y., Wu, W.: A smoothing-type algorithm for solving system of inequalities. J. Comput. Appl. Math. 220, 355–363 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Huang, Z.H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45, 557–579 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Jiang, X., Zhang, Y.: A smoothing-type algorithm for absolute value equations. J. Ind. Manag. Optim. 9, 789–798 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Kong, L.: Quadratic convergence of a smoothing Newton method for symmetric cone programming without strict complementarity. Positivity 16, 297–319 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Liu, L.X., Liu, S.Y., Wang, C.F.: Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesia \(P/P_0\)-property. J. Ind. Manag. Optim. 7(1), 53–66 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Liu, L.X., Liu, S.Y.: A new nonmonotone smoothing Newton method for the symmetric cone complementarity problem with the Cartesian \(P_0\)-property. Math. Meth. Oper. Res. 92, 229–247 (2020)

    MATH  Google Scholar 

  18. Liu, X.H., Huang, Z.H.: A smoothing Newton algorithm based on a one-parametric class of smoothing functions for linear programming over symmetric cones. Math. Math. Oper. Res. 70, 385–404 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Liu, X.H., Gu, W.Z.: Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones. J. Ind. Manag. Optim. 6(2), 363–380 (2010)

    MATH  Google Scholar 

  20. Lu, N., Huang, Z.H.: A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems. J. Optim. Theory Appl. 161, 446–464 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Narushima, Y., Sagara, N., Ogasawara, H.: A smoothing Newton method with Fischer-Burmeister function for second-order cone complementarity problems. J. Optim. Theory Appl. 149, 79–101 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  23. Potra, F.A.: Weighted complementarity problems-a new paradigm for computing equilibria. SIAM J. Optim. 22, 1634–1654 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Potra, F.A.: Sufficient weighted complementarity problems. Comput. Optim. Appl. 64(2), 467–488 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Potra, F.A.: Equilibria and weighted complementarity problems. In: Al-Baali M., Grandinetti L., Purnama A. (eds) Numerical Analysis and Optimization. NAO 2017. Springer Proceedings in Mathematics and Statistics, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-90026-1_-12 (2018)

  26. Qi, H.D.: A regularized smoothing Newton method for box constrained variational inequality problems with \(P_0\)-functions. SIAM J. Optim. 10, 315–330 (2000)

    MathSciNet  Google Scholar 

  27. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87, 1–35 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Smale, S.: Algorithms for solving equations. In: Gleason, A.M. (ed.) Proceeding of International Congress of Mathematicians, pp. 172–195. American Mathematics Society, Providence, Rhode Island (1987)

    Google Scholar 

  30. Sun, D., Sun, J.: L\(\ddot{\mathit{}o\mathit{}}\)wner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33, 421–445 (2008)

    MathSciNet  Google Scholar 

  31. Tseng, P.: Error bounds and superlinear convergence analysis of some Newton-type methods in optimization. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp. 445–462. Kluwer Academic Publishers, Boston (2000)

    MATH  Google Scholar 

  32. Tang, J.Y.: A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs. Comput. Appl. Math. 37, 3927–3936 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Tang, J.Y., Zhang, H.C.: A nonmonotone smoothing Newton algorithm for weighted complementarity problems. J. Optim. Theory Appl. 189, 679–715 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Tang, J.Y., Zhou, J.C.: Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones. Ann. Oper. Res. 295, 787–808 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Tang, J.Y., Zhou, J.C.: A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems. Optim. Methods Softw. 37, 1145–1164 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Tang, J.Y., Zhou, J.C.: Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Comput. Optim. Appl. 80, 213–244 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Tang, J., Ma, C.: A smoothing Newton method for symmetric cone complementarity problems. Optim. Lett. 9, 225–244 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Wang, G.Q., Zhang, Z.H., Zhu, D.T.: On extending primal-dual interior-point method for linear optimization to convex quadratic symmetric cone optimization. Numer. Funct. Anal. Optim. 34(5), 576–603 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17, 1129–1153 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, J.: A smoothing Newton algorithm for weighted linear complementarity problem. Optim. Lett. 10, 499–509 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Zhu, J.G., Liu, H.W., Li, X.L.: A regularized smoothing-type algorithm for solving a system of inequalities with a \(P_0\)-function. J. Comput. Appl. Math. 233, 2611–2619 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Zhang.

Additional information

Communicated by Dr. Qianchuan Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (11771255), the Shandong Province Natural Science Foundation (ZR2021MA066, 2019KJI013), the Henan Province Natural Science Foundation (222300420520), the Key Scientific Research Projects of Higher Education of Henan Province (22A110020) and the USA National Science Foundation (1819161, 2110722).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhou, J. & Zhang, H. An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems. J Optim Theory Appl 196, 641–665 (2023). https://doi.org/10.1007/s10957-022-02152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02152-6

Keywords

Navigation