Skip to main content
Log in

Low-Thrust Transfers to Southern \(L_2\) Near-Rectilinear Halo Orbits Facilitated by Invariant Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the manifolds of three Near-Rectilinear Halo Orbits (NRHOs) and optimal low-thrust transfer trajectories using a high-fidelity dynamical model. Time- and fuel-optimal low-thrust transfers to (and from) these NRHOs are generated leveraging their ‘invariant’ manifolds, which serve as long terminal coast arcs. Analyses are performed to identify suitable manifold entry/exit conditions based on inclination and minimum distance from the Earth. The relative merits of the stable/unstable manifolds are studied with regard to time- and fuel-optimality criteria, for a set of representative low-thrust family of transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barden, B.T.: Using Stable manifolds to Generate Transfers in the Circular Restricted Problem of Three Bodies. Master’s thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (1994)

  2. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang–bang optimal control problems-numerical results and statistical interpretation. Optim. Control Appl. Methods 23(4), 171–197 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. CRC Press, Boca Raton (1975)

    Google Scholar 

  4. Capdevila, L.R., Howell, K.C.: A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth–Moon system. Adv. Space Res. 62(7), 1826–1852 (2018)

    Article  Google Scholar 

  5. Cox, A.D., Howell, K.C., Folta, D.C.: Trajectory design leveraging low-thrust, multi-body equilibria and their manifolds. J. Astronaut. Sci. 67(3), 977–1001 (2020)

    Article  Google Scholar 

  6. Davis, D., Bhatt, S., Howell, K., Jang, J.-W., Whitley, R., Clark, F., Guzzetti, D., Zimovan, E., Barton, G.: Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits (2017)

  7. Guzzetti, D., Zimovan, E.M., Howell, K.C., Davis, D.C.: Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: 27th AAS/AIAA Space Flight Mechanics Meeting, AAS Marriott Plaza, Texas, pp. 1–20 (2017)

  8. Hambleton, K.: Deep Space Gateway to open opportunities for distant destinations. https://www.nasa.gov/feature/deep-space-gateway-to-open-opportunities-for-distant -destinations (2017)

  9. Howell, K., Breakwell, J.: Almost rectilinear halo orbits. Celest. Mech. 32(1), 29–52 (1984)

    Article  MathSciNet  Google Scholar 

  10. Hufenbach, B., Laurini, K., Satoh, N., Lange, C., Martinez, R., Hill, J., Landgraf, M., Bergamasco, A.: International missions to lunar vicinity and surface-near-term mission scenario of the Global Space Exploration Roadmap. In: IAF 66th International Astronautical Congress (2015)

  11. JPL planetary and lunar ephemeris DE436. https://naif.jpl.nasa.gov/pub/naif/JUNO/kernels/spk/de436s.bsp.lbl. Online; Accessed 11 May 2020

  12. Junkins, J.L., Taheri, E.: Exploration of alternative state vector choices for low-thrust trajectory optimization. J. Guid. Control Dyn. 42(1), 47–64 (2019)

    Article  Google Scholar 

  13. Junkins, J.L., Schaub, H.: Analytical Mechanics of Space Systems. American Institute of Aeronautics and Astronautics, New York (2009)

    MATH  Google Scholar 

  14. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical systems, the three-body problem and space mission design. In: Equadiff 99: (In 2 Volumes), pp. 1167–1181. World Scientific (2000)

  15. Lawden, D.F.: Optimal Trajectories for Space Navigation, vol. 3. Butterworths, Seberang Perai (1963)

    MATH  Google Scholar 

  16. Laurini, K.C., Hufenbach, B., Hill, J., Ouellet, A.: The global exploration roadmap and expanding human/robotic exploration mission collaboration opportunities. In: IAF 66th International Astronautical Congress (2015)

  17. Lee, D.E.: White Paper: Gateway Destination Orbit Model: A Continuous 15 Year NRHO Reference Trajectory (2019)

  18. McGuire, M.L., McCarty, S.L., Burke, L.M.: Power and Propulsion Element (PPE) Spacecraft Reference Trajectory Document. Technical Memorandum TM—2020-220481, Glenn Research Center, National Aeronautics and Space Administration, Cleveland, Ohio (2020)

  19. Miele, A., Weeks, M., Ciarcia, M.: Optimal trajectories for spacecraft Rendezvous. J. Optim. Theory Appl. 132(3), 353–376 (2007)

    Article  MathSciNet  Google Scholar 

  20. Olympio, J.T.: A continuous implementation of a second-variation optimal control method for space trajectory problems. J. Optim. Theory Appl. 158(3), 687–716 (2013)

    Article  MathSciNet  Google Scholar 

  21. Oshima, K.: The use of vertical instability of \(L\_1\) and \(L\_2\) planar Lyapunov orbits for transfers from near rectilinear halo orbits to planar distant retrograde orbits in the Earth–Moon system. Celest. Mech. Dyn. Astron. 131(3), 1–28 (2019)

    Article  Google Scholar 

  22. Ozimek, M.T.: A Low-Thrust Transfer Strategy to Earth-moon Collinear Libration Point Orbits. Ph.D. thesis, MS Thesis, School of Aeronautics and Astronautics, Purdue University (2006)

  23. Ozimek, M., Howell, K.: Low-thrust transfers in the Earth–Moon system, including applications to libration point orbits. J. Guid. Control Dyn. 33(2), 533–549 (2010)

    Article  Google Scholar 

  24. Pan, X., Pan, B.: Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem. IEEE Access 8, 47845–47862 (2020)

    Article  Google Scholar 

  25. Pan, B., Pan, X., Lu, P.: Finding best solution in low-thrust trajectory optimization by two-phase homotopy. J. Spacecr. Rockets 56(1), 283–291 (2019)

    Article  Google Scholar 

  26. Pontani, M., Teofilatto, P.: Polyhedral representation of invariant manifolds applied to orbit transfers in the Earth–Moon system. Acta Astronaut. 119, 218–232 (2016)

    Article  Google Scholar 

  27. Pontani, M., Miele, A.: Theorem of optimal image trajectories in the restricted problem of three bodies. J. Optim. Theory Appl. 168(3), 992–1013 (2016)

    Article  MathSciNet  Google Scholar 

  28. Pritchett, R.E., Zimovan, E., Howell, K.: Impulsive and low-thrust transfer design between stable and nearly-stable periodic orbits in the restricted problem. In: 2018 Space Flight Mechanics Meeting, p. 1690 (2018)

  29. Qu, Q., Xu, M., Peng, K.: The cislunar low-thrust trajectories via the libration point. Astrophys. Space Sci. 362(5), 96 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sengupta, P., Vadali, S.: Analytical solution for power-limited optimal rendezvous near an elliptic orbit. J. Optim. Theory Appl. 138(1), 115 (2008)

    Article  MathSciNet  Google Scholar 

  31. Singh, S.K., Anderson, B.D., Taheri, E., Junkins, J.L.: Exploiting manifolds of L1 halo orbits for end-to-end Earth–Moon low-thrust trajectory design. Acta Astronaut. 183, 255–272 (2021)

    Article  Google Scholar 

  32. Singh, S.K., Anderson, B.D., Taheri, E., Junkins, J.L.: Eclipse-conscious transfer to lunar gateway using ephemeris-driven terminal coast arcs. J. Guid. Control Dyn. (2021). https://doi.org/10.2514/1.G005920

    Article  Google Scholar 

  33. Taheri, E., Junkins, J.L.: How many impulses redux. J. Astronaut. Sci. 67, 257–334 (2020). https://doi.org/10.1007/s40295-019-00203-1

    Article  Google Scholar 

  34. Taheri, E., Junkins, J.L.: Generic smoothing for optimal bang-off-bang spacecraft maneuvers. J. Guid. Control Dyn. 41(11), 2470–2475 (2018)

    Article  Google Scholar 

  35. Taheri, E., Junkins, J.L., Kolmanovsky, I., Girard, A.: A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1. Acta Astronaut. 172, 151–165 (2020)

    Article  Google Scholar 

  36. Taheri, E., Kolmanovsky, I., Atkins, E.: Enhanced smoothing technique for indirect optimization of minimum-fuel low-thrust trajectories. J. Guid. Control Dyn. 39, 2500–2511 (2016)

    Article  Google Scholar 

  37. Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem. J. Astronaut. Sci. 53(4), 353–372 (2005)

    Article  MathSciNet  Google Scholar 

  38. Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154(3), 713–758 (2012)

    Article  MathSciNet  Google Scholar 

  39. Trofimov, S., Shirobokov, M., Tselousova, A., Ovchinnikov, M.: Transfers from near-rectilinear halo orbits to low-perilune orbits and the Moon’s surface. Acta Astronaut. 167, 260–271 (2020)

    Article  Google Scholar 

  40. Wall, M.: NASA Plans to Build a Moon-Orbiting Space Station: Here’s What You Should Know. Space. com (2018)

  41. Whitley, R., Martinez, R.: Options for staging orbits in cislunar space. In: 2016 IEEE Aerospace Conference, pp. 1–9. IEEE (2016)

  42. Whitley, R.J., Davis, D.C., Burke, L.M., McCarthy, B.P., Power, R.J., McGuire, M.L., Howell, K.C.: Earth–moon near rectilinear halo and butterfly orbits for lunar surface exploration. In: AAS/AIAA Astrodynamics Specialists Conference (2018)

  43. Zhang, R., Wang, Y., Zhang, H., Zhang, C.: Transfers from distant retrograde orbits to low lunar orbits. Celest. Mech. Dyn. Astron. 132(8), 1–30 (2020)

    Article  MathSciNet  Google Scholar 

  44. Zimovan, E.M., Howell, K.C., Davis, D.C.: Near rectilinear halo orbits and their application in cis-lunar space. In: 3rd IAA Conference on Dynamics and Control of Space Systems, Moscow, Russia, p. 20 (2017)

Download references

Acknowledgements

This work was completed at Texas A&M University. A part of this work was done as a private venture and not in the author’s capacity as an employee of the Jet Propulsion Laboratory, California Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep K. Singh.

Additional information

Communicated by Mauro Pontani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper was presented as AAS 20-565 at the 2020 AAS/AIAA Astrodynamics Specialist Virtual Lake Tahoe Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Anderson, B.D., Taheri, E. et al. Low-Thrust Transfers to Southern \(L_2\) Near-Rectilinear Halo Orbits Facilitated by Invariant Manifolds. J Optim Theory Appl 191, 517–544 (2021). https://doi.org/10.1007/s10957-021-01898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01898-9

Keywords

Navigation