Skip to main content
Log in

Second-Order Necessary Conditions for Optimal Control with Recursive Utilities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The necessary conditions for an optimal control of a stochastic control problem with recursive utilities are investigated. The first-order condition is the well-known Pontryagin-type maximum principle. When such a first-order necessary condition is singular in some sense, certain type of the second-order necessary condition will come in naturally. The aim of this paper is to explore such kind of conditions for our optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70(4), 1403–1443 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kushner, H.: Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim. 10(3), 550–565 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A.: Lectures on Stochastic Control in Nonlinear Filtering and Stochastic Control. Lectures Notes in Mathematics. Springer, Berlin (1982)

    MATH  Google Scholar 

  4. Bismut, J.M.: An introductory approach to duality in optimal stochastic control. SIAM Rev. 20(1), 62–78 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27(2), 125–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dokuchaev, N., Zhou, X.Y.: Stochastic controls with terminal contingent conditions. J. Math. Anal. Appl. 238(1), 143–165 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shi, J., Wu, Z.: The maximum principle for fully coupled forward–backward stochastic control system. Acta Autom. Sin. 32(2), 161 (2006)

    MathSciNet  Google Scholar 

  9. Wu, Z.: Maximum principle for optimal control problem of fully coupled forward–backward stochastic systems. Syst. Sci. Math. Sci. 3, 249–259 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Peng, S.: Open problems on backward stochastic differential equations. In: Chen, S., Li, X., Yong, J., Zhou, X.Y. (eds.) Control of Distributed Parameter and Stochastic Systems, pp. 265–273. Springer, New York (1999)

    Chapter  Google Scholar 

  11. Wu, Z.: A general maximum principle for optimal control of forward–backward stochastic systems. Automatica 49(5), 1473–1480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yong, J.: Optimality variational principle for controlled forward–backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim. 48(6), 4119–4156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, M.: Stochastic global maximum principle for optimization with recursive utilities. Probab. Uncertain. Quant. Risk 2(1), 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  14. Bell, D.J., Jacobson, D.H.: Singular Optimal Control Problems. Mathematics in Science and Engineering, vol. 117. Elsevier, London (1975)

    Book  MATH  Google Scholar 

  15. Gabasov, R., Kirillova, F.: High order necessary conditions for optimality. SIAM J. Control 10(1), 127–168 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kazemi-Dehkordi, M.: Necessary conditions for optimality of singular controls. J. Optim. Theory Appl. 43(4), 629–637 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krener, A.J.: The high order maximal principle and its application to singular extremals. SIAM J. Control Optim. 15(2), 256–293 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, S.: A second-order maximum principle for singular optimal stochastic controls. Discrete Contin. Dyn. Syst. Ser. B 14, 1581–1599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonnans, J.F., Silva, F.J.: First and second order necessary conditions for stochastic optimal control problems. Appl. Math. Optim. 65(3), 403–439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, H., Zhang, X.: Pointwise second-order necessary conditions for stochastic optimal controls, part I: the case of convex control constraint. SIAM J. Control Optim. 53(4), 2267–2296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, H., Zhang, X.: Pointwise second-order necessary conditions for stochastic optimal controls, part II: the general case. SIAM J. Control Optim. 55(5), 2841–2875 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frankowska, H., Zhang, H., Zhang, X.: First and second order necessary conditions for stochastic optimal controls. J. Differ. Equ. 262(6), 3689–3736 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mou, L., Yong, J.: A variational formula for stochastic controls and some applications. Pure Appl. Math. Q. 3(2), 539–567 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Yao, Y.: Maximum principle of distributed parameter systems with time lags. In: Kappel, F., Kunisch, K., Schappacher, W. (eds.) Distributed Parameter Systems, pp. 410–427. Springer, Berlin (1985)

    Chapter  Google Scholar 

  25. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  26. Stein, E.M., Shakarchi, R.: Real Analysis. Princeton Lectures in Analysis III. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  27. Framstad, N.C., Øksendal, B., Sulem, A.: Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J. Optim. Theory Appl. 121(1), 77–98 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63(3), 341–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges financial support from Région Pays de la Loire through the Grant PANORisk. The second author was supported by the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholar (No. LR15A010001) and the National Natural Science Foundation of China (Nos. 11871211, 11471079). Both authors would like to thank the editors and anonymous reviewers for their valuable comments and suggestions that helped improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxin Meng.

Additional information

Nikolai Osmolovskii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof for the Claim in Sect. 4.2

Appendix: Proof for the Claim in Sect. 4.2

We give the proof for the claim that there is a null subset \(\mathcal {T}_{ij}^k \subset [0,T]\) such that, for \(t \in [0,T]/\mathcal {T}_{ij}^k\),

$$\begin{aligned}&\lim _{r\rightarrow 0+} \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}\bigg [\gamma (u)(\delta G(t,Z_{ij}^{u_k}(u))\\&\qquad +\,\delta b^*(t,Z_{ij}^{u_k}(u))P(u))\delta b(s,Z_{ij}^{u_k}(s))I_{\{s \le u\}}\bigg ]\hbox {d}s\hbox {d}u\\&\quad =\frac{(\alpha +\beta )^2}{2}\mathbb {E}\bigg [\gamma (t)(\delta G(t,Z_{ij}^{u_k}(t))+\delta b^*(t,Z_{ij}^{u_k}(t))P(t))\delta b(t,Z_{ij}^{u_k}(t)) \bigg ]. \end{aligned}$$

Note that both \(\gamma (u)(\delta G(t,Z_{ij}^{u_k}(u))+\delta b^*(t,Z_{ij}^{u_k}(u))P(u))\) and \(\delta b(s,Z_{ij}^{u_k}(s))\) are square integrable processes. We shall prove a more general result that for any two processes \(f,g \in L^{2}_{\mathbb {F}}(0,T)\), there exists a null subset \(\mathcal {T} \subset [0,T]\) such that for \(t \in [0,T]/\mathcal {T}\),

$$\begin{aligned} \lim _{r\rightarrow 0+} \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[f(u)g(s)I_{\{s \le u\}}]\hbox {d}s\hbox {d}u =\frac{(\alpha +\beta )^2}{2}\mathbb {E}[f(t)g(t) ]. \end{aligned}$$

This result will prove our previous claim immediately. We divide the proof into three steps.

Step 1. We prove that, for\(f \in L^{2}_{\mathbb {F}}(0,T)\), there exists a null subset\(\mathcal {T} \subset [0,T]\)such that, for\(t \in [0,T]/\mathcal {T}\),

$$\begin{aligned} \lim _{r\rightarrow 0+} \frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[ |f(t)-f(s)|^2]\hbox {d}s =0. \end{aligned}$$

Let \(\zeta (t)\) be the standard mollifier (for its properties see Appendix C.4 in [25]), i.e.,

$$\begin{aligned} \zeta (t)=\left\{ \begin{aligned}\exp \left( -\frac{1}{1-t^2}\right) ,&\quad \text {if }\,|t| \le 1;\\ 0,\qquad&\quad \text {otherwise;} \end{aligned} \right. \end{aligned}$$

and \(\zeta _n(t)=n\zeta (nt)\). We define \(f_n(t):=f \star \zeta _n(t)\) with \(\star \) representing the convolution between functions on \(\mathbb {R}\). Then, we see that \(f_n\) has continuous trajectories almost surely. Moreover, if we define a function g on [0, T] as \(g_n(t):=\mathbb {E}[|f_n(t)-f(t)|^2]\), then \(\left\| g_n\right\| _{L^1}=\int _0^T g_n(t)\hbox {d}t \longrightarrow 0\) as n goes to infinity. Define

$$\begin{aligned} T_r(f)(t):=\frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[ |f(t)-f(s)|^2]\hbox {d}s, \end{aligned}$$

and \(T(f)(t)=\limsup _{r \rightarrow 0}T_r(f)(t)\). It is then sufficient to prove that the set \(E_{a}:=\{t \in [0,T]| T(f)(t) \ge 2a\}\) is a null set for any \(a>0\). One can easily obtain that

$$\begin{aligned} T_r(f)\le & {} C\left( \frac{1}{r}\int _{t-r\beta }^{t+r\alpha }g_n(s)\hbox {d}s+T_r(f_n)(t)+g_n(t)\right) \\\le & {} C(Mg_n(t)+T_r(f_n)(t)+g_n(t)), \end{aligned}$$

for any n, with \(Mg_n\) being the Hardy–Littlewood maximal function of \(g_n\). Since \(f_n\) has continuous paths, we have \(\lim _{r \rightarrow 0} T_r(f_n)(t) =0\) for any t. Then,

$$\begin{aligned} T(f)(t) \le C (Mg_n(t)+g_n(t)), \end{aligned}$$

which implies that

$$\begin{aligned} E_a \subset \left\{ Mg_n \ge \frac{a}{2C}\right\} \cup \left\{ g_n \ge \frac{a}{2C}\right\} . \end{aligned}$$

From Hardy–Littlewood maximal inequality (see [26]),

$$\begin{aligned} \left| \left\{ Mg_n \ge \frac{a}{2C}\right\} \right| \le \frac{2C_1 C}{a}\left\| g_n\right\| _{L^1}, \end{aligned}$$

where \(C_1\) is the constant from the inequality. Using Chebychev’s inequality, we also obtain

$$\begin{aligned} \left| \left\{ g_n \ge \frac{a}{2C}\right\} \right| \le \frac{2C}{a}\left\| g_n\right\| _{L^1}. \end{aligned}$$

Letting n go to infinity, we show that \(|E_a|=0\).

Step 2. There exists a null subset\(\mathcal {T} \subset [0,T]\)such that, for\(t \in [0,T]/\mathcal {T}\),

$$\begin{aligned} \lim _{r\rightarrow 0+} \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha }\left| \mathbb {E}[f(s)g(u)]-\mathbb {E}[f(t)g(t)]\right| \hbox {d}s\hbox {d}u =0. \end{aligned}$$

Note that

$$\begin{aligned}&\left| \mathbb {E}[f(s)g(u)]-\mathbb {E}[f(t)g(t)]\right| \\&\quad \le \left| \mathbb {E}[(f(s)-f(t))g(u)]\right| +\left| \mathbb {E}[f(t)(g(u)-g(t))]\right| \\&\quad \le \mathbb {E}[|f(s)-f(t)|^2]^{\frac{1}{2}}\mathbb {E}[|g(u)|^2]^{\frac{1}{2}}+\mathbb {E}[|g(u)-g(t)|^2]^{\frac{1}{2}}\mathbb {E}[|f(t)|^2]^{\frac{1}{2}}. \end{aligned}$$

Then,

$$\begin{aligned}&\frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|f(s)-f(t)|^2]^{\frac{1}{2}}\mathbb {E}[|g(u)|^2]^{\frac{1}{2}}\hbox {d}s\hbox {d}u\\&\quad =\frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|f(s)-f(t)|^2]^{\frac{1}{2}} \hbox {d}s \frac{1}{r}\int _{t-r\beta }^{t+r\alpha } E[|g(u)|^2]^{\frac{1}{2}} \hbox {d}u. \end{aligned}$$

Using Hölder inequality, we have

$$\begin{aligned} \frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|f(s)-f(t)|^2]^{\frac{1}{2}} \hbox {d}s \le (\alpha +\beta )^{\frac{1}{2}}\left( \frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|f(s)-f(t)|^2]\hbox {d}s\right) ^{\frac{1}{2}}, \end{aligned}$$

and

$$\begin{aligned} \frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|g(u)|^2]^{\frac{1}{2}} \hbox {d}u \le (\alpha +\beta )^{\frac{1}{2}}\left( \frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|g(u)|^2]\hbox {d}u\right) ^{\frac{1}{2}}. \end{aligned}$$

From Step 1, there is a null subset \(\mathcal {T}^{\prime }\) such that, for \(t \in [0,T]/\mathcal {T}^{\prime }\), \(\frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|f(s)-f(t)|^2]^{\frac{1}{2}} \hbox {d}s \longrightarrow 0\) as r goes to 0. Since \(\mathbb {E}[|g(u)|^2]\) is Lebesgue integral on [0, T], there is a null set \(\mathcal {T}^{\prime \prime } \subset [0,T]\) such that, for \(t \in [0,T]/\mathcal {T}^{\prime \prime }\),

$$\begin{aligned} \lim _{r \rightarrow 0+}\frac{1}{r}\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|g(u)|^2]\hbox {d}u= \mathbb {E}[|g(t)|^2]. \end{aligned}$$

Define \(\mathcal {T}_1:=\mathcal {T}^{\prime } \cup \mathcal {T}^{\prime \prime }\). It is a null subset, and for \(t \in [0,T]/\mathcal {T}_1\), we have

$$\begin{aligned} \lim _{r \rightarrow 0+} \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|f(s)-f(t)|^2]^{\frac{1}{2}}\mathbb {E}[|g(u)|^2]^{\frac{1}{2}}\hbox {d}s\hbox {d}u=0. \end{aligned}$$

Similarly, there is another null set \(\mathcal {T}_2\) such that, for \(t \in [0,T]/\mathcal {T}_2\),

$$\begin{aligned} \lim _{r \rightarrow 0+} \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[|g(u)-g(t)|^2]^{\frac{1}{2}}\mathbb {E}[|f(t)|^2]^{\frac{1}{2}}\hbox {d}s\hbox {d}u=0. \end{aligned}$$

Let \(\mathcal {T}:=\mathcal T_1 \cup \mathcal T_2\). This is the desired subset.

Step 3. Now we shall prove the final result.

Note that

$$\begin{aligned} \frac{(\alpha +\beta )^2}{2}\mathbb {E}[f(t)g(t) ]=\frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[f(t)g(t) ] I_{\{s \le u\}}\hbox {d}s\hbox {d}u. \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned}&\left| \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[f(u)g(s)I_{\{s \le u\}}]\hbox {d}s\hbox {d}u -\frac{(\alpha +\beta )^2}{2}\mathbb {E}[f(t)g(t) ]\right| \\&\quad \le \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha }\left| \mathbb {E}[f(u)g(s)]-\mathbb {E}[f(t)g(t)]\right| I_{\{s \le u\}}\hbox {d}s\hbox {d}u\\&\quad \le \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha }\left| \mathbb {E}[f(u)g(s)]-\mathbb {E}[f(t)g(t)]\right| \hbox {d}s\hbox {d}u. \end{aligned} \end{aligned}$$

From Step 2, we know that there is a null subset \(\mathcal {T}\) such that, for \(t \in [0,T]/\mathcal {T}\), the above term tends to 0, which implies that

$$\begin{aligned} \lim _{r\rightarrow 0+} \frac{1}{r^2}\int _{t-r\beta }^{t+r\alpha }\int _{t-r\beta }^{t+r\alpha } \mathbb {E}[f(u)g(s)I_{\{s \le u\}}]\hbox {d}s\hbox {d}u =\frac{(\alpha +\beta )^2}{2}\mathbb {E}[f(t)g(t) ]. \end{aligned}$$

Thus, we finish the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Meng, Q. Second-Order Necessary Conditions for Optimal Control with Recursive Utilities. J Optim Theory Appl 182, 494–524 (2019). https://doi.org/10.1007/s10957-019-01518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01518-7

Keywords

Mathematics Subject Classification

Navigation