Skip to main content
Log in

An Extension of Polyak’s Theorem in a Hilbert Space

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Let H be an infinite-dimensional real Hilbert space equipped with the scalar product (⋅,⋅) H . Let us consider three linear bounded operators,

$$A_{i}:H\rightarrow H,\quad\,i=1,2,3.$$

We define the functions

$$\begin{array}{rcl}\varphi_{i}(x)&=&(A_{i}x,x)_{H}+2(a_{i},x)_{H}+\alpha_{i},\quad\forall x\in H,\ i=1,2,\\[3pt]f_{i}(x)&=&(A_{i}x,x)_{H},\quad\forall x\in H,\ i=1,2,3,\end{array}$$

where a i H and α i ∈ℝ. In this paper, we discuss the closure and the convexity of the sets Φ H ⊂ℝ2 and F H ⊂ℝ3 defined by

$$\begin{array}{rcl}\Phi_{H}&=&\{(\varphi_{1}(x),\varphi_{2}(x))\mid x\in H\},\\[3pt]F_{H}&=&\{(f_{1}(x),f_{2}(x),f_{3}(x))\mid x\in H\}.\end{array}$$

Our work can be considered as an extension of Polyak’s results concerning the finite-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toeplitz, O.: Das algebraische Analogen zu einem Saiz von Fejer. Math. Z. 2, 187–197 (1918)

    Article  MathSciNet  Google Scholar 

  2. Hausdorff, F.: Der Wertvorrat einer Bilinearform. Math. Z. 3, 314–316 (1919)

    Article  MathSciNet  Google Scholar 

  3. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    Article  MathSciNet  Google Scholar 

  4. Brickman, L.: On the field of values of a matrix. Proc. Am. Math. Soc. 12, 61–66 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yakubovich, V.A.: The S-procedure in nonlinear control theory. Vestn. Leningr. Univ. 1, 62–77 (1971) (in Russian)

    Google Scholar 

  6. Vershik, A.M.: Quadratic forms positive on a cone and quadratic duality. Zap. Nauchn. Semin. LOMI 134, 59–83 (1984) (in Russian)

    MATH  MathSciNet  Google Scholar 

  7. Polyak, T.B.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99(3), 553–583 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hestenes, R.M.: Optimization Theory. Robert E. Krieger, Huntington (1981)

    Google Scholar 

  9. Matveev, A.S.: Lagrange duality in nonconvex optimization theory and modifications of the Toeplitz-Hausdorff theorem. St. Petersbg. Math. J. 7, 787–815 (1996)

    Google Scholar 

  10. Matveev, A.S.: On the convexity of the ranges of quadratic mappings. St. Petersbg. Math. J. 10, 343–372 (1999)

    Google Scholar 

  11. Yakubovich, V.A.: Nonconvex optimization problem: The infinite-horizon linear-quadratic control problem with quadratic constraints. Syst. Control Lett. 19, 13–22 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arutyunov, V.A., Rozova, N.V.: Regular zeros of a quadratic mapping and local controllability of nonlinear systems. Differ. Equ. 35, 723–728 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Mergretsky, A., Treil, S.: Power distribution inequalities in optimization and robustness of uncertain systems. Math. Syst. Estim. Control 3, 301–319 (1993)

    Google Scholar 

  14. Brezis, H.: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baccari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccari, A., Samet, B. An Extension of Polyak’s Theorem in a Hilbert Space. J Optim Theory Appl 140, 409–418 (2009). https://doi.org/10.1007/s10957-008-9457-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9457-4

Keywords

Navigation