Skip to main content
Log in

Semiclassical Approximation of the Wigner Function for the Canonical Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Weyl–Wigner representation of quantum mechanics allows one to map the density operator in a function in phase space—the Wigner function—which acts like a probability distribution. In the context of statistical mechanics, this mapping makes the transition from the classical to the quantum regimes very clear, because the thermal Wigner function tends to the Boltzmann distribution in the high temperature limit. We approximate this quantum phase space representation of the canonical density operator for general temperatures in terms of classical trajectories, which are obtained through a Wick rotation of the semiclassical approximation for the Weyl propagator. A numerical scheme which allows us to apply the approximation for a broad class of systems is also developed. The approximation is assessed by testing it against systems with one and two degrees of freedom, which shows that, for a considerable range of parameters, the thermodynamic averages are well reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The code used in this article can be found at [49].

References

  1. Planck, M.: Über das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309(3), 553–563 (1901)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  ADS  Google Scholar 

  3. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12(7), 405–460 (1946)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Moyal, J.E.: Quantum mechanics as a statistical theory. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 45, pp. 99–124 (1949). Cambridge University Press, Cambridge

  5. Grossmann, A.: Parity operator and quantization of \(\delta \)-functions. Commun. Math. Phys. 48, 191–194 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Royer, A.: Wigner function as the expectation value of a parity operator. Phys. Rev. A 15(2), 449 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bertet, P., Auffeves, A., Maioli, P., Osnaghi, S., Meunier, T., Brune, M., Raimond, J.-M., Haroche, S.: Direct measurement of the Wigner function of a one-photon fock state in a cavity. Phys. Rev. Lett. 89(20), 200402 (2002)

    Article  ADS  Google Scholar 

  8. Ingold, G.-L.: Path integrals and their application to dissipative quantum systems. In: Coherent Evolution in Noisy Environments, pp. 1–53. Springer, Dresden (2002)

  9. Greiner, W., Bromley, D.A., Reinhardt, J.: Field Quantization. Springer, Berlin (2013)

    Google Scholar 

  10. Yan, Y.-A., Liu, J., Shao, J.: A semiclassical initial-value representation for quantum propagator and Boltzmann operator. J. Comput. Chem. 40(10), 1161–1171 (2019)

    Article  Google Scholar 

  11. Zhao, Y., Miller, W.H.: Semiclassical initial value representation for the boltzmann operator in thermal rate constants. J. Chem. Phys. 117(21), 9605–9610 (2002)

    Article  ADS  Google Scholar 

  12. Shao, J., Pollak, E.: A new time evolving gaussian series representation of the imaginary time propagator. J. Chem. Phys. 125(13), 133502 (2006)

    Article  ADS  Google Scholar 

  13. Liu, J., Miller, W.H.: Using the thermal gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions. J. Chem. Phys. 125(22), 224104 (2006)

    Article  ADS  Google Scholar 

  14. Pollak, E., Martin-Fierro, E.: New coherent state representation for the imaginary time propagator with applications to forward-backward semiclassical initial value representations of correlation functions. J. Chem. Phys. 126(16), 164107 (2007)

    Article  ADS  Google Scholar 

  15. Liu, J., Miller, W.H.: An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. i. theories. J. Chem. Phys. 134(10), 104101 (2011). https://doi.org/10.1063/1.3555273

    Article  ADS  Google Scholar 

  16. Liu, J., Miller, W.H.: An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. ii. Thermal correlation functions. J. Chem. Phys. 134(10), 104102 (2011)

    Article  ADS  Google Scholar 

  17. De Carvalho, C., Cavalcanti, R., Fraga, E., Jorás, S.: Semiclassical series at finite temperature. Ann. Phys. 273(1), 146–170 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Carvalho, C.A.A., Cavalcanti, R.M., Fraga, E.S., Jorás, S.: Semiclassical approximation to the partition function of a particle in d dimensions. Phys. Rev. E 61(6), 6392 (2000)

    Article  ADS  Google Scholar 

  19. Arnol’d, V.I., Wassermann, G., Dubrovin, B.A., Novikov, S.P., Givental’, A.B., Kirillov, A.A., Krichever, I.M.: Dynamical Systems IV: Symplectic Geometry and Its Applications. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2013)

    Google Scholar 

  20. De Almeida, A.M.O.: Hamiltonian Systems: Chaos and Quantization. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  21. Haroche, S., Raimond, J.M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford Graduate Texts, OUP, Oxford (2006)

    Book  MATH  Google Scholar 

  22. Schlagheck, P., Ullmo, D., Urbina, J.D., Richter, K., Tomsovic, S.: Enhancement of many-body quantum interference in chaotic bosonic systems: the role of symmetry and dynamics. Phys. Rev. Lett. 123(21), 215302 (2019)

    Article  ADS  Google Scholar 

  23. Ozorio de Almeida, A.M., Ingold, G.-L., Brodier, O.: The quantum canonical ensemble in phase space. Physica D 424, 132951 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gil de Oliveira, M.: Aproximações Semiclássicas para o Ensemble Canônico. Master’s thesis, CBPF (2023)

  25. Ozorio de Almeida, A.M.: The Weyl representation in classical and quantum mechanics. Phys. Rep. 295(6), 265–342 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  26. Ozorio de Almeida, A.M., Ingold, G.-L.: Metaplectic sheets and caustic traversals in the Weyl representation. J. Phys. A 47(10), 105303 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Nicacio, F., Valdés-Hernández, A., Majtey, A.P., Toscano, F.: Unified framework to determine gaussian states in continuous-variable systems. Phys. Rev. A 96(4), 042341 (2017)

    Article  ADS  Google Scholar 

  28. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, New York (2013)

    Google Scholar 

  29. Ozorio de Almeida, A.M., Vallejos, R.O., Zambrano, E.: Initial or final values for semiclassical evolutions in the Weyl-Wigner representation. J. Phys. A 46(13), 135304 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Yurke, B., Stoler, D.: Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)

    Article  ADS  Google Scholar 

  31. Averbukh, I.S., Perelman, N.F.: Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics. Phys. Lett. A 139(9), 449–453 (1989)

    Article  ADS  Google Scholar 

  32. Kirchmair, G., Vlastakis, B., Leghtas, Z., Nigg, S.E., Paik, H., Ginossar, E., Mirrahimi, M., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495(7440), 205–209 (2013)

    Article  ADS  Google Scholar 

  33. Lando, G.M., Vallejos, R.O., Ingold, G.-L., Ozorio de Almeida, A.M.: Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A 99, 042125 (2019)

    Article  ADS  Google Scholar 

  34. Almeida, A.O., M Rios, P., Brodier, O.: Semiclassical evolution of dissipative markovian systems. J. Phys. A 42(6), 065306 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Brodier, O., Almeida, A.O.: Complex wkb evolution of markovian open systems. J. Phys. A 43(50), 505308 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Koda, S.-I.: Initial-value semiclassical propagators for the Wigner phase space representation: formulation based on the interpretation of the moyal equation as a schrödinger equation. J. Chem. Phys. 143(24), 244110 (2015)

    Article  ADS  Google Scholar 

  37. De Aguiar, M., Baranger, M., Jaubert, L., Parisio, F., Ribeiro, A.D.: Semiclassical propagation of wavepackets with complex and real trajectories. J. Phys. A 38(21), 4645 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Morse, P.M.: Diatomic molecules according to the wave mechanics. ii. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  MATH  ADS  Google Scholar 

  39. Slater, N.: Classical motion under a morse potential. Nature 180(4598), 1352–1353 (1957)

    Article  MATH  ADS  Google Scholar 

  40. Goggin, M.E., Milonni, P.W.: Driven morse oscillator: classical chaos, quantum theory, and photodissociation. Phys. Rev. A 37, 796–806 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  41. Dahl, J.P., Springborg, M.: The Morse oscillator in position space, momentum space, and phase space. J. Chem. Phys. 88(7), 4535–4547 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  42. Haynes, W.M.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  43. Riganelli, A., Prudente, F.V., Varandas, A.J.: On the rovibrational partition function of molecular hydrogen at high temperatures. J. Phys. Chem. A 105(41), 9518–9521 (2001)

    Article  Google Scholar 

  44. Baranger, M., Davies, K.T.R.: Periodic trajectories for a two-dimensional nonintegrable Hamiltonian. Ann. Phys. 177(2), 330–358 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Provost, D.: Signatures of classical periodic orbits on a smooth quantum system. Phys. Rev. E 51(6), 5396 (1995)

    Article  ADS  Google Scholar 

  46. Provost, D., Brumer, P.: Uniform semiclassical wave-packet propagation and eigenstate extraction in a smooth chaotic system. Phys. Rev. Lett. 74(2), 250 (1995)

    Article  ADS  Google Scholar 

  47. Ribeiro, A., Aguiar, M., Baranger, M.: Semiclassical approximations based on complex trajectories. Phys. Rev. E 69(6), 066204 (2004)

    Article  ADS  Google Scholar 

  48. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989). https://doi.org/10.1103/PhysRevA.40.2847

    Article  ADS  Google Scholar 

  49. Gil de Oliveira, M.: GitHub repository containing the code used in this article. https://github.com/marcsgil/SCCEPaper

  50. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  MATH  Google Scholar 

  51. Rackauckas, C., Nie, Q.: Differentialequations.jl - a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. (2017). https://doi.org/10.5334/jors.151

  52. Genz, A.C., Malik, A.A.: Remarks on algorithm 006: an adaptive algorithm for numerical integration over an n-dimensional rectangular region. J. Comput. Appl. Math. 6(4), 295–302 (1980)

    Article  MATH  Google Scholar 

  53. Berntsen, J., Espelid, T.O., Genz, A.: An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Softw. 17(4), 437–451 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. Integrals.jl. https://github.com/SciML/Integrals.jl

  55. Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge - Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989). https://doi.org/10.1016/0893-9659(89)90079-7

    Article  MathSciNet  MATH  Google Scholar 

  56. List of ODE Solvers of the DifferentialEquations.jl package. https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/#Full-List-of-Methods

  57. Verner, J.: Numerically optimal Runge-Kutta pairs with interpolants. Numer. Algorithms 53, 383–396 (2010). https://doi.org/10.1007/s11075-009-9290-3

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  MATH  ADS  Google Scholar 

  59. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Gabriel Lando for his advice on the numerics. Funding provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Instituto Nacional de Ciência e Tecnologia de Informaa̧ão Quântica is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcos Gil de Oliveira or Alfredo Miguel Ozorio de Almeida.

Ethics declarations

Financial interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript

Additional information

Communicated by Chris Jarzynski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Wigner symbol of normal forms

In order to calculate the Wigner symbol of an operator of the form (47), it is sufficient to do so for the monomials \({\hat{o}}^n\), where \({\hat{o}} = {\hat{p}}^2+{\hat{q}}^2\). Our strategy will consist in finding a recurrence relation that allows us to calculate \(o^{n+1}(p,q)\) in terms of \(o^n(p,q)\). As the initial term \(o^1(p,q) = o(p,q) = p^2+q^2\) is readily obtained, the problem is solved.

For that, we first observe that, as \({\hat{o}}^n\) is hermitian, \(o^n(p,q)\) must be real. Using this fact, writing \({\hat{o}}^{n+1} = {\hat{o}} {\hat{o}}^{n}\), and applying Groenewold’s rule (11), we arrive at the recurrence relation

$$\begin{aligned} o^{n+1}(p,q) = \left( p^2+q^2 - \frac{\hbar ^2}{4}\nabla ^2 \right) o^n(p,q) \end{aligned}$$
(A1)

where \(\nabla ^2 = \partial _p^2 + \partial _q^2\). This relation is further simplified if we introduce the coordinates \(s,\phi \), defined by \(p = \sqrt{s} \cos \phi , \ q = \sqrt{s} \sin \phi \), in terms of which the laplacian takes the form

$$\begin{aligned} \nabla ^2 = 4 \left( s \partial _s^2 + \partial _s \right) + \frac{1}{s}\partial _\phi ^2, \end{aligned}$$
(A2)

which allows us to rewrite (A1) as

$$\begin{aligned} o^{n+1}(s,\phi ) = \left[ s - \hbar ^2\left( s \partial _s^2 + \partial _s +\frac{1}{4s}\partial _\phi ^2\right) \right] o^n(s,\phi ) \end{aligned}$$
(A3)

Since \(\partial _\phi o(s,\phi ) = 0\), and, as deduced from the recurrence relation, \(\partial _\phi o^n(s,\phi ) = 0 \Rightarrow \partial _\phi o^{n+1}(s,\phi ) = 0\), we prove by induction that \(\partial _\phi o^n(s,\phi ) = 0 \ \forall \ n\), which eliminates the derivative with respect to \(\phi \) from (A3). This allows us to easily obtain the first terms in the recurrence relation, which, already expressed in terms of pq, are given by

$$\begin{aligned} \begin{aligned} o^2(p,q)&= \left( p^2 + q^2 \right) ^2 - \hbar ^2 \\ o^3(p,q)&= \left( p^2 + q^2 \right) ^3 - 5\hbar ^2\left( p^2 + q^2 \right) \\ o^4(p,q)&= \left( p^2 + q^2 \right) ^4 - 14\hbar ^2\left( p^2 + q^2 \right) ^2 + 5 \hbar ^4 \\ \end{aligned} \end{aligned}$$
(A4)

We see that, in general, \({\hat{o}}^n(p,q)\) is a polynomial of order n in \((p^2+q^2)\), whose dominant term is \((p^2+q^2)^n\), while corrections proportional to even powers of \(\hbar \) are also present.

Appendix B: Numerical Details

The calculations in this article were performed using the Julia language [50]. The package DifferentialEquations.jl [51] was used to solve the necessary differential equations in parallel. The calculations were performed on a 12th Gen Intel Core i5-12600K processor, which has 16 threads.

1.1 Morse System

The integrals related to the Morse system were performed using Gaussian quadrature. The integration region, in units of \(\omega = \hbar = 1\), is given by

$$\begin{aligned} R = \left\{ (p,q) \in {\mathbb {R}}^2 \ \left| \ \chi p^2 + \frac{1}{4\chi } \left( 1-e^{-q} \right) ^2 < \frac{1}{4\chi } \right. \right\} \end{aligned}$$
(B5)

Introducing the variables \({\tilde{P}} = 2\chi p\) e \(Q = 1-e^{-q} \), we obtain

$$\begin{aligned} \begin{aligned} R&= \left\{ \left( {\tilde{P}},Q\right) \in {\mathbb {R}}^2 \ \left| \ {\tilde{P}}^2 + Q^2 < 1 \right. \right\} \\ {}&= \left\{ \left( {\tilde{P}},Q\right) \in {\mathbb {R}}^2 \ \left| \ Q \in \left( -1,1 \right) ; \ {\tilde{P}} \in \left( -\sqrt{1-Q^2},\sqrt{1-Q^2} \right) \right. \right\} , \end{aligned} \end{aligned}$$
(B6)

which can be simplified by defining \(P = {\tilde{P}}/\sqrt{1-Q^2}\). Then, we have

$$\begin{aligned} R = \left\{ \left( P,Q\right) \in {\mathbb {R}}^2 \ \left| \ Q \in \left( -1,1 \right) ; \ P \in \left( -1,1 \right) \right. \right\} . \end{aligned}$$
(B7)

The inverse transformation is then

$$\begin{aligned} {\left\{ \begin{array}{ll} p = \sqrt{1-Q^2}\dfrac{P}{2\chi } \\ q = -\ln \left( 1-Q \right) \end{array}\right. }, \end{aligned}$$
(B8)

which has jacobian determinant

$$\begin{aligned} \det \frac{\partial (p,q)}{\partial (P,Q)} = \frac{1}{2\chi } \sqrt{\frac{1+Q}{1-Q}}, \end{aligned}$$
(B9)

which is proportional to the weight function of a Gauss-Chebyshev quadrature of the 3\(^\circ \) kind. We therefore use this quadrature rule to perform the integration over the Q coordinate, while a Gauss-Legendre quadrature is used to integrate over P. The advantage of Gaussian quadrature is that the integration points will be independent of \(\theta \), and then a single set of points can be used to compute the thermodynamic quantities over a range of temperatures. In this work, we used a grid of \(300 \times 300\) points to perform the integration, which corresponds to \(9 \times 10^4\) trajectories.

1.2 Nelson System

In the semiclassical calculations for the Nelson system, different techniques were used for different set of parameters.

In the case of the energy, as well as the heat with \(\mu = 1.5, 2\), we first performed the change of variables \((p_x,p_y,x,y) \mapsto (P_X,P_y,X,Y)\) with

$$\begin{aligned} {\left\{ \begin{array}{ll} P_x = \sqrt{\dfrac{\theta }{2}} p_x \\ P_y = \sqrt{\dfrac{\theta }{2}} p_y \\ X = \sqrt{\theta \mu } x \\ Y = \sqrt{\theta } (y - x^2/2) \end{array}\right. }. \end{aligned}$$
(B10)

This transformation has constant jacobian determinant and, in terms of the new variables, we have that the classical Boltzmann’s weight is simply

$$\begin{aligned} e^{-\beta H} = \exp \left[ - \left( P_x^2 + P_y^2 + X^2 + Y^2 \right) \right] . \end{aligned}$$
(B11)

The integration is then performed by an h-adaptive technique as described in [52, 53]. The Julia implementation can be found in [54]. We bounded the integration algorithm to use roughly \(10^5\) integration points. We used the BS3 [55, 56] and Vern6 [56, 57] algorithms to solve the differential equations, and the tolerances varied between \(10^{-2}\) and \(10^{-6}\). For each \(\mu \), the corresponding plot took around 40 seconds to 3 minutes to complete.

We found that the heat capacities with \(\mu = 0.5, 1\) were much harder to integrate. In this case, we didn’t perform a change of variables and resorted to a Monte Carlo integration method, where the \(10^7\) integration points were sampled from the classical Boltzmann’s distribution \(e^{-\beta H({\varvec{x}})}/Z\) using the Metropolis-Hastings algorithm [58, 59]. In this case, for each \(\mu \), the corresponding plot took around 3 hours to complete.

For the energy spectrum, which is used to calculate the quantum versions of the thermodynamic quantities, we used a grid of \(160 \times 160\) points, where x spanned from \(-4.5\) to 4.5, and y spanned from \(-4\) to 5. We then approximated the laplacian of the time independent Schrödinger equation through a finite differences matrix over this grid. The discretizatation of this equation gives rise to a eigenvalue equation, which can be solve through standard linear algebra libraries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.G., de Almeida, A.M.O. Semiclassical Approximation of the Wigner Function for the Canonical Ensemble. J Stat Phys 190, 153 (2023). https://doi.org/10.1007/s10955-023-03164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03164-w

Keywords

Navigation