Skip to main content
Log in

De Broglie–Bohm Cycles. Free Relativistic One-Half Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the de Broglie–Bohm quantum theory, particles describe trajectories determined by the flux associated with their wave function. These trajectories are studied here for relativistic spin-one-half particles. Based in explicit numerical calculations for the case of a massless particle in dimension three space-time, it is shown that if the wave function is an eigenfunction of the total angular momentum, the trajectories—here called “de Broglie–Bohm cycles”—begin as circles of slowly increasing radius until a transition time at which they tend to follow straight lines. Arrival times at some detector, as well as their probability distribution are calculated, too. The chosen energy and momentum parameters are of the orders of magnitude met in graphene’s physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Only the theory of a single particle is considered here. See  [24,25,26] for a discussion of the N-particle relativistic case.

  2. See [27] for the calculation of such states in the case of the non-relativistic free particle.

  3. See  [22, 23] for an interesting experiment proposal.

  4. This holds e.g., for a non-relativistic particle in general, or a spin 1/2 relativistic one. We do not consider here cases such as the relativistic spin zero particle described by the Klein-Gordon equation.

  5. Its explicit form will be given below for the cases studied there.

  6. I.e., a volume whose boundary points move along the dBB trajectories.

  7. At least in the non-relativistic case. See footnote 1.

  8. In fact Dirac’s original form, reduced to 3 space-time dimensions.

  9. The present discussion is the reduction to 3-dimensional space-time of the one made by [24, 31] in 4 dimensions.

  10. We restrict to positive energy contributions.

  11. This is the so-called critical velocity, which we will denote by c.

  12. This value is very near of the one corresponding to the stationary wave function with same \(j=5/2\) and p equal to the momentum parameter \(p_0=10^{-4}\). Indeed, Eq. (3.38) together with Table 1 yield \(\hat{r}\)= 22.6.

  13. Examples where this is not the case are presented and discussed in [22, 23, 37, 38].

References

  1. Planck, M.: Ueber das Gesetz der Energieverteilung im Normalspectrum (English translation). Annalen der Physik 4, 553 (1901)

    Article  ADS  MATH  Google Scholar 

  2. Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 26, 1–25 (1913)

    Article  ADS  MATH  Google Scholar 

  3. Einstein, A.: Concerning an Heuristic Point of View Toward the Emission and Transformation of Light. Annalen der Physik 17, 132 (1905)

    Article  ADS  Google Scholar 

  4. de Broglie, L.: Recherches sur la théorie des quanta, Thesis (Paris) (1924)

  5. de Broglie, L.: Ann. Phys. (Paris) 3, 22,: Reprint in Ann. Found. Louis de Broglie 17(1992), 22 (1925)

  6. De Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8, 225 (1927). https://doi.org/10.1051/jphysrad:0192700805022500

    Article  MATH  Google Scholar 

  7. Schrödinger, E.: Quantisierung als Eigenwertproblem. Annalen der Physik 79, 361 (1926)

    Article  ADS  MATH  Google Scholar 

  8. Schrödinger, E.: Quantisierung als Eigenwertproblem. Annalen der Physik 79, 489 (1926)

    Article  ADS  MATH  Google Scholar 

  9. Schrödinger, E.: Quantisierung als Eigenwertproblem. Annalen der Physik 80, 437 (1926)

    Article  ADS  MATH  Google Scholar 

  10. Schrödinger, E.: Quantisierung als Eigenwertproblem. Annalen der Physik 81, 109 (1926)

    Article  ADS  MATH  Google Scholar 

  11. Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33, 879 (1925)

    Article  ADS  MATH  Google Scholar 

  12. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928)

    ADS  MATH  Google Scholar 

  13. Bohr, N.: The quantum postulate and the recent development of atomic theory. Supplement to "Nature 580 (1928)

  14. Heisenberg, W.: Physics and Philosophy. Harper, New York (1958)

    Google Scholar 

  15. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  16. Rovelli, C.: Relational quantum mechanics. Int. J. Theoret. Phys. 35, 1637–1678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Biagio, A., Rovelli, C.: Stable facts, relative facts. Found. Phys. 51, 1–13 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1995)

    MATH  Google Scholar 

  20. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  21. Daumer, M., Dürr, D., Goldstei, S., Zanghi, N.: On the quantum probability flux through surfaces. J. Stat. Phys. 88, 967–977 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Das, S., Dürr, D.: Arrival time distributions of spin-1/2 particles. Nat. Sci. Rep. 9, 2242 (2019)

    Google Scholar 

  23. Das, S., Markus, N., Dürr, D.: Exotic arrival times of spin-1/2 particles I–an analytical treatment. Phys. Rev. A 99, 052124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Holland, P.R.: The Quantum Theory of Motion, Revised ed. Cambridge University Press, Cambridge (1995)

  25. Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. A 470, 20130699 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Tumulka, R.: On Bohmian mechanics, particle creation, and relativistic space-time: Happy 100th Birthday, David Bohm! Entropy 20, 462 (2018)

    Article  ADS  Google Scholar 

  27. Bressanini, D., Ponti, A.: Angular momentum and the two-dimensional free particle. J. Chem. Educ. 75, 916 (1998)

    Article  Google Scholar 

  28. Wolfram Research, Inc., Mathematica, Champaign, IL

  29. Pais, A.: On spinors in n dimensions. J. Math. Phys. 3, 1135–1139 (1962). https://doi.org/10.1063/1.1703856

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Dürr, D., Goldstein, S., Zanghi, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Holland, P.R.: The Dirac equation in the de Broglie-Bohm theory of motion. Found. Phys. 22, 1287–1301 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  32. The Wolfram Functions Site, https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/21/02/02/

  33. WolframMathWorld, https://functions.wolfram.com/GammaBetaErf/Erf/

  34. Katsnelson, M.I.: The Physics of Graphene, 2nd edn. Cambridge University Press, Cambridge (2020)

    Book  MATH  Google Scholar 

  35. Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407 (2011)

    Article  ADS  Google Scholar 

  36. Messiah, A.: Quantum Mechanics, vol. 1, Section VIII-13, Dover Publications, New York (2014) (English translation of Mécanique Quantique, Dunod, Paris (1962))

  37. Dürr, D., Teufel, S.: Bohmian Mechanics, Chap 16. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  38. Das, S.: Relativistic electron wave packets featuring quantum backflow, arXiv:2112.13180

  39. Leavens, C.R.: Bohm trajectory approach to timing electrons, p. 129 of Time in Quantum Mechanics—vol. 1, 2\(^{d}\). In: Muga, J.G., Sala Mayato, R., Egusquiza, Í.L. (eds.) Lecture Notes in Physics, p. 734. Springer, Heidelberg (2008)

  40. Das, S., Nöth, M.: Times of arrival and gauge invariance. Proc. R. Soc. A 477, 20210101 (2021). https://doi.org/10.1098/rspa.2021.0101

    Article  ADS  MathSciNet  Google Scholar 

  41. WolframMathWorld, “Bessel function”, https://mathworld.wolfram.com/topics/BesselFunctions.html

  42. WolframMathWorld, https://mathworld.wolfram.com/BesselFunctionZeros.html

  43. Weisstein, E.W.: Fourier-Bessel Series. From MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com/Fourier-BesselSeries.html

Download references

Acknowledgements

I would like to thank Siddhant Das for his reading of the manuscript, the indication of interesting references and valuable comments.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Piguet.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to disclose.

Additional information

Communicated by Michael Kiessling.

To my beloved Izabel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A: Notations and Conventions

Units used in this paper are adapted to the physics of graphene. Length, time and energy are given in nm, ns and meV, respectively. The critical velocity and the Planck constant take the values

$$\begin{aligned} c=10^6\,\hbox {nm ns}^{-1}, \quad \hbar =6.5821 \times 10^{-4}\hbox {meV ns}. \end{aligned}$$
(A.1)

Space-time coordinate are denoted by \(x^\mu \), \(\mu =0,1,2\), space coordinates by \({\textbf{x}}=(x,y)\), or \((r,{\phi })\). Space-time metric is \(\eta _{\mu \nu }\) = diag\((1,-1,-1)\)

Dirac matrices are chosen in terms of the Pauli matrices as

$$\begin{aligned} \gamma ^0=\sigma ^z,\quad \gamma ^1=\gamma ^0\sigma ^x ,\quad \gamma ^2=\gamma ^0\sigma ^y. \end{aligned}$$
(A.2)

The Dirac matrices \(\alpha ^i=\gamma ^0\gamma ^i\) used in the non-relativistic formulation explicitly are

$$\begin{aligned} \alpha ^1=\sigma ^x,\quad \alpha ^2=\sigma ^y,\quad \beta =\sigma ^z. \end{aligned}$$
(A.3)

Appendix B: Some Useful Properties of the Bessel Functions

The general solution of the Bessel equation [41]

$$\begin{aligned} z^2 f''(z)+z f'(z) + (z^2-n^2)f(z) = 0, \end{aligned}$$
(B.1)

has the form

$$\begin{aligned} f(z)=C_1 J_n(z)+C_2 Y_n(z), \end{aligned}$$
(B.2)

where \(J_n\) and \(Y_n\) are the Bessel functions of the first [41], respectively second [41] kind, and \(C_1\), \(C_2\) are two arbitrary complex constants. We shall restrict ourselves to an integer index n.

The asymptotic behaviours of the Bessel functions at the origin are given by

$$\begin{aligned} \begin{array}{ll} J_n(x)\sim \dfrac{1}{n!}\left( \dfrac{x}{2}\right) ^n \quad &{}(0<x\ll 1,\ n\ge 0),\\ Y_n(x)\sim -\dfrac{(n-1)!}{\pi }\left( \dfrac{2}{x}\right) ^n \quad &{}(0<x\ll 1,\ n\ge 1),\\ Y_0(x)\sim \dfrac{2}{\pi } \log \left( \dfrac{x}{2}\right) \quad &{} (0<x\ll 1), \end{array} \end{aligned}$$
(B.3)

and at infinity by

$$\begin{aligned} \begin{array}{ll} J_n(x)\sim \sqrt{\dfrac{2}{\pi x}}\cos \left( x-\dfrac{(n+\frac{1}{2})\pi }{2}\right) \qquad &{}(x\gg 1,\ n\ge 0) ,\\ Y_n(x)\sim \sqrt{\dfrac{2}{\pi x}}\sin \left( x-\dfrac{(n+\frac{1}{2})\pi }{2}\right) \qquad &{}(x\gg 1,\ n\ge 0). \end{array} \end{aligned}$$
(B.4)

Functions with a negative index are related to those with a positive one by the identities

$$\begin{aligned} J_{-n}(z)=(-1)^n J_n(z),\qquad Y_{-n}(z)=(-1)^n Y_n(z). \end{aligned}$$
(B.5)

Under parity \(z\rightarrow -z\), the function \(J_n\) transforms as

$$\begin{aligned} J_n(-z)=(-1)^n J_n(z). \end{aligned}$$
(B.6)

An interesting orthogonality property is given by [41]

$$\begin{aligned} \displaystyle {\int }_{\!\!\!\!0}^R dr\,r\, J_n\left( \frac{z_{n,\alpha }\,r}{R}\right) J_n\left( \frac{z_{n,\beta }\,r}{R}\right) =\frac{R^2}{2}\left( J_{n+1}(z_{n,\alpha }\right) ^2 \delta _{\alpha \beta }, \end{aligned}$$
(B.7)

for \(n\ge 0\), where \(z_{n,\alpha }\) is the \(\alpha \textrm{th}\) positive zero of the Bessel function \(J_n(z)\) [42]. Moreover, any function f(r) defined in the interval \(0\le r\le R\) with bounded variation and vanishing at the end point \(r=R\) can be represented as a “Fourier Bessel series” [43] as

$$\begin{aligned} f(r)=\sum _{\alpha =1}^\infty c_\alpha J_n\left( \frac{z_{n,\alpha }\,r}{R}\right) , \end{aligned}$$
(B.8)

for any \(n\ge 0\). The coefficients \(c_\alpha \) can be calculated using the orthogonality formula (B.7).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piguet, O. De Broglie–Bohm Cycles. Free Relativistic One-Half Particles. J Stat Phys 190, 127 (2023). https://doi.org/10.1007/s10955-023-03137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03137-z

Keywords

Navigation