Skip to main content
Log in

Level-2 Large Deviation Principle for Countable Markov Shifts Without Gibbs States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 25 March 2024

This article has been updated

Abstract

We consider level-2 large deviations for the one-sided countable full shift without assuming the existence of Bowen’s Gibbs state. To deal with non-compact closed sets, we provide a sufficient condition in terms of inducing which ensures the exponential tightness of a sequence of Borel probability measures constructed from periodic configurations. Under this condition we establish the level-2 Large Deviation Principle. We apply our results to the continued fraction expansion of real numbers in [0, 1) generated by the Rényi map, and obtain the level-2 Large Deviation Principle, as well as a weighted equidistribution of a set of quadratic irrationals to equilibrium states of the Rényi map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

This article has no associated data.

Change history

Notes

  1. In fact, one can show \(P(\Phi _{\beta ,P(\beta \phi )})=0\). See [23] for example.

References

  1. Aaronson, J., Denker, M., Urbański, M.: Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Am. Math. Soc. 337, 495–548 (1993)

    MathSciNet  Google Scholar 

  2. Adler, R.L.: \(F\)-Expansions. Revisited Recent Advances in Topological Dynamic. Lecture Notes in Mathematics, vol. 318, pp. 1–5. Springer, Berlin (1973)

    Google Scholar 

  3. Bowen, R.: Invariant measures for Markov maps of the interval. Commun. Math. Phys. 69, 1–17 (1979)

    ADS  MathSciNet  Google Scholar 

  4. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (2008)

    Google Scholar 

  5. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    ADS  MathSciNet  Google Scholar 

  6. Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergodic Theory Dyn. Syst. 23, 1383–1400 (2003)

    MathSciNet  Google Scholar 

  7. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics, vol. 38, 2nd edn. Springer, New York (1998)

    Google Scholar 

  8. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften, vol. 271. Springer, New York (1985)

    Google Scholar 

  9. Fayolle, G., de La Fortelle, A.: Entropy and large deviations for discrete-time Markov chains. Probl. Inf. Transm. 38, 354–367 (2002)

    MathSciNet  Google Scholar 

  10. Fiebig, D., Fiebig, U.-R., Yuri, M.: Pressure and equilibrium states for countable state Markov shifts. Isr. J. Math. 131, 221–257 (2002)

    MathSciNet  Google Scholar 

  11. Gurevič, B.M., Savchenko, S.V.: Thermodynamic formalism for countable symbolic Markov chains. Russ. Math. Surv. 53, 245–344 (1998)

    Google Scholar 

  12. Hofbauer, F.: Examples for the nonuniqueness of the equilibrium state. Trans. Am. Math. Soc. 228, 223–241 (1977)

    MathSciNet  Google Scholar 

  13. Iommi, G.: Multifractal analysis of the Lyapunov exponent for the backward continued fraction map. Ergodic Theory Dyn. Syst. 30, 211–232 (2010)

    MathSciNet  Google Scholar 

  14. Khinchin, A.Y.: Continued Fractions. University of Chicago Press, Chicago (1964)

    Google Scholar 

  15. Kifer, Y.: Large deviations in dynamical systems and stochastic processes. Trans. Am. Math. Soc. 321, 505–524 (1990)

    MathSciNet  Google Scholar 

  16. Kifer, Y.: Large deviations, averaging and periodic orbits of dynamical systems. Commun. Math. Phys. 162, 33–46 (1994)

    ADS  MathSciNet  Google Scholar 

  17. Maes, C., Redig, F., Takens, F., van Moffaert, A., Verbitski, E.: Intermittency and weak Gibbs states. Nonlinearity 13, 1681–1698 (2000)

    ADS  MathSciNet  Google Scholar 

  18. Mauldin, R.D., Urbański, M.: Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge Tracts in Mathematics, vol. 148. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  19. Nakaishi, K.: Multifractal formalism for some parabolic maps. Ergodic Theory Dyn. Syst. 20, 843–857 (2000)

    MathSciNet  Google Scholar 

  20. Northshield, S.: A short proof and generalization of Lagrange’s theorem on continued fractions. Am. Math. Mon. 118, 171–175 (2011)

    MathSciNet  Google Scholar 

  21. Olsen, L.: Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. J. Math. Pures Appl. 82, 1591–1649 (2003)

    MathSciNet  Google Scholar 

  22. Orey, S., Pelikan, S.: Deviations of trajectory averages and the defect in Pesin’s formula for Anosov diffeomorphisms. Trans. Am. Math. Soc. 315, 741–753 (1989)

    MathSciNet  Google Scholar 

  23. Pesin, Y., Senti, S.: Equilibrium measures for maps with inducing schemes. J. Mod. Dyn. 2, 397–430 (2008)

    MathSciNet  Google Scholar 

  24. Pianigiani, G.: First return map and invariant measures. Isr. J. Math. 35, 32–48 (1980)

    MathSciNet  Google Scholar 

  25. Pollicott, M., Sharp, R.: Large deviations for intermittent maps. Nonlinearity 22, 2079–2092 (2009)

    ADS  MathSciNet  Google Scholar 

  26. Pollicott, M., Sharp, R., Yuri, M.: Large deviations for maps with indifferent fixed points. Nonlinearity 11, 1173–1184 (1998)

    ADS  MathSciNet  Google Scholar 

  27. Pollicott, M., Urbański, M.: Asymptotic counting in conformal dynamical systems. Mem. Am. Math. Soc. 271, 139 (2021)

    MathSciNet  Google Scholar 

  28. Prellberg, T., Slawny, J.: Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Stat. Phys. 66, 503–514 (1992)

    ADS  MathSciNet  Google Scholar 

  29. Ruelle, D.: Thermodynamic Formalism, the Mathematical Structures of Classical Equilibrium Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  30. Sarig, O.: Thermodynamic formalism for countable Markov shifts. Ergodic Theory Dyn. Syst. 19, 1565–1593 (1999)

    MathSciNet  Google Scholar 

  31. Sarig, O.: Existence of Gibbs measures for countable Markov shifts. Proc. Am. Math. Soc. 131, 1751–1758 (2003)

    MathSciNet  Google Scholar 

  32. Sinaĭ, J.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk. 27, 21–64 (1972)

    MathSciNet  Google Scholar 

  33. Takahashi, Y.: Entropy Functional (Free Energy) for Dynamical Systems and Their Random Perturbations. Stochastic Analysis (Katata/Kyoto, 1982), pp. 437–467. North-Holland, Amsterdam (1984)

    Google Scholar 

  34. Takahasi, H.: Large deviation principles for countable Markov shifts. Trans. Am. Math. Soc. 372, 7831–7855 (2019)

    MathSciNet  Google Scholar 

  35. Takahasi, H.: Uniqueness of minimizer for countable Markov shifts and equidistribution of periodic points. J. Stat. Phys. 181, 2415–2431 (2020)

    ADS  MathSciNet  Google Scholar 

  36. Takahasi, H.: Entropy-approchability for transitive Markov shifts over infinite alphabet. Proc. Am. Math. Soc. 148, 3847–3857 (2020)

    Google Scholar 

  37. Takahasi, H.: Large deviation principle for the backward continued fraction expansion. Stoch. Process. Appl. 144, 153–172 (2022)

    MathSciNet  Google Scholar 

  38. Thaler, M.: Transformations on \([0,1]\) with infinite invariant measures. Isr. J. Math. 46, 67–96 (1983)

    MathSciNet  Google Scholar 

  39. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)

    ADS  MathSciNet  Google Scholar 

  40. Walters, P.: Invariant measures and equilibrium states for some mappings which expand distances. Trans. Am. Math. Soc. 236, 121–153 (1978)

    MathSciNet  Google Scholar 

  41. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)

    Google Scholar 

  42. Yuri, M.: Thermodynamic formalism for certain nonhyperbolic maps. Ergodic Theory Dyn. Syst. 19, 1365–1378 (1999)

    MathSciNet  Google Scholar 

  43. Yuri, M.: Weak Gibbs measures for intermittent systems and weakly Gibbsian states in statistical mechanics. Commun. Math. Phys. 241, 453–466 (2003)

    ADS  MathSciNet  Google Scholar 

  44. Yuri, M.: Large deviations for countable to one Markov systems. Commun. Math. Phys. 258, 455–474 (2005)

    ADS  MathSciNet  Google Scholar 

  45. Zweimüller, R.: Invariant measures for general(ized) induced transformations. Proc. Am. Math. Soc. 133, 2283–2295 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the referees for their careful readings of the manuscript and giving useful suggestions for improvements. This research was partially supported by the JSPS KAKENHI 19K21835 and 20H01811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Takahasi.

Ethics declarations

Conflicts of interest

The author has no conflict of interest to disclose.

Additional information

Communicated by Marco Lenci.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahasi, H. Level-2 Large Deviation Principle for Countable Markov Shifts Without Gibbs States. J Stat Phys 190, 120 (2023). https://doi.org/10.1007/s10955-023-03126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03126-2

Keywords

Mathematics Subject Classification

Navigation