Skip to main content
Log in

Functional Convergence of Berry’s Nodal Lengths: Approximate Tightness and Total Disorder

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Berry’s random planar wave model (J Phys A 10(12):2083–2092, 1977), and prove spatial functional limit theorems—in the high-energy limit—for discretized and truncated versions of the random field obtained by restricting its nodal length to rectangular domains. Our analysis is crucially based on a detailed study of the projection of nodal lengths onto the so-called second Wiener chaos, whose high-energy fluctuations are given by a Gaussian total disorder field indexed by polygonal curves. Such an exact characterization is then combined with moment estimates for suprema of stationary Gaussian random fields, and with a tightness criterion by Davydov and Zitikis (Ann Inst Stat Math 60(2):345–365, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. The presence of the prefactor \(4\pi ^2\) is inherited from [31, 37], where it was introduced in order to facilitate the connections with the literature about Arithmetic Random Waves [21, 26].

References

  1. Abert, M., Bergeron, N., Le Masson, E.: Eigenfunctions and random waves in the Benjamini–Schramm limit. Preprint at arXiv:1810.05601 (2021)

  2. Ancona, M., Letendre, T.: Roots of Kostlan polynomials: moments, strong law of large numbers and central limit theorem. Ann. Henri Lebesgue 4, 1659–1703 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ancona, M., Letendre, T.: Zeros of smooth stationary Gaussian processes. Electron. J. Probab. (2021). https://doi.org/10.1214/21-EJP637

    Article  MathSciNet  MATH  Google Scholar 

  4. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer-Verlag, New York (2007)

    Google Scholar 

  5. Beliaev, D., Cammarota, V., Wigman, I.: Two point function for critical points of a random plane wave. Int. Math. Res. Notices 2019(9), 2661–2689 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A 10(12), 2083–2092 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Berry, M.V.: Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. J. Phys. A 35(13), 3025–3038 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Buckley, J., Sodin, M.: Fluctuations of the increment of the argument for the Gaussian entire function. J. Stat. Phys. 168(2), 300–330 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Canzani, Y., Hanin, B.: Local universality for zeros and critical points of monochromatic random waves. Commun. Math. Phys. 378, 1677–1712 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353(7), 2615–2633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dalmao, F., Nourdin, I., Peccati, G., Rossi, M.: Phase singularities in complex arithmetic random waves. Electron. J. Probab. 24, 45 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dierickx, G., Nourdin, I., Peccati, G., Rossi, M.: Small scale CLTs for the nodal length of monochromatic waves. Commun. Math. Phys. (2022). https://doi.org/10.1007/s00220-022-04422-w

    Article  MATH  Google Scholar 

  13. Dehling, H., Taqqu, M.S.: The empirical process of some long-range dependent sequences with an application to \(U\)-statistics. Ann. Stat. 17(4), 1767–1783 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  15. Davydov, Y., Zitikis, R.: On weak convergence of random fields. Ann. Inst. Stat. Math. 60(2), 345–365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernique, X.: Processus linéaires, processus généralisés. Ann. Inst. Fourier 17(1), 1–92 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hughes, C.P., Nikeghbali, A., Yor, M.: An arithmetic model for the total disorder process. Probab. Theory Relat. Fields 141(1), 47–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ingremeau, M.: Local weak limits of Laplace eigenfunctions. Tunis. J. Math. 3(3), 481–515 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivanov, A.A.: Convergence of distributions of functionals of measurable random fields. Ukr. Math. J. 32(1), 19–25 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krishnapur, M., Kurlberg, P., Wigman, I.: Non-universality of nodal length distribution for arithmetic random waves. Ann. Math. 177(2), 699–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurlberg, P., Wigman, I.: Non-universality of the Nazarov–Sodin constant for random plane waves and arithmetic random waves. Adv. Math. 330, 516–552 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lebowitz, J.L.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27(3), 1491–1494 (1983)

    Article  ADS  Google Scholar 

  25. Marinucci, D., Peccati, G.: Random fields on the sphere: representation. In: Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2011)

  26. Marinucci, D., Peccati, G., Rossi, M., Wigman, I.: Non-universality of nodal length distribution for arithmetic random waves. GAFA 3, 926–960 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Muirhead, S., Rivera, A., Vanneauville, H., Köhler-Schindler, L.: The phase transition for planar Gaussian percolation models without FKG. Preprint at arXiv:2010.11770 (2020)

  28. Marinucci, D., Wigman, I.: On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys. 52(9), 093301 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Neuhaus, G.: On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Stat. 42(4), 1285–1295 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nourdin, I., Peccati, G.: Normal Approximation with Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  31. Nourdin, I., Peccati, G., Rossi, M.: Nodal statistics of planar random waves. Commun. Math. Phys. 369(1), 99–151 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Nazarov, F., Sodin, M.: Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. J. Math. Phys. Anal. Geom. 12(3), 205–278 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  34. Paranjape, S.R., Park, C.: Distribution of the supremum of the two-parameter Yeh-Wiener process on the boundary. J. Appl. Probab. 10(4), 875–880 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  35. Priya, L.: Overcrowding estimates for zero count and nodal length of stationary Gaussian processes. Preprint at arXiv:2012.10857 (2020)

  36. Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer-Verlag, Berlin (2010)

    MATH  Google Scholar 

  37. Peccati, G., Vidotto, A.: Gaussian random measures generated by Berry’s nodal sets. J. Stat. Phys. 178(4), 996–1027 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Selberg, A.: Contributions to the Theory of the Riemann Zeta-Function. Archiv for mathematik og naturvidenskab. Cammermeyer, Oslo (1946)

    Google Scholar 

  39. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), pp. 367–385. University of Salerno, Salerno (1992)

  40. Sodin, M., Tsirelson, B.: Random complex zeroes. I. Asymptotic normality. Isr. J. Math. 144, 125–149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Szego, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  42. Taylor, J.E., Adler, R.J.: Gaussian processes, kinematic formulae and Poincaré’s limit. Ann. Probab. 37(4), 1459–1482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Torquato, S.: Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wichura, M.J.: Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters. Ann. Math. Stat. 40(2), 681–687 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wieand, K.: Eigenvalue distributions of random unitary matrices. Probab. Theory Relat. Fields 123(2), 202–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wigman, I.: Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys. 298(3), 787–831 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Wigman, I.: On the nodal structures of random fields—a decade of results. Preprint at arXiv:2206.10020 (2022)

  48. Zelditch, S.: Real and complex zeros of Riemannian random waves. In: Spectral Analysis in Geometry and Number Theory, Volume 484 of Contemporary Mathematics (2009)

Download references

Acknowledgements

We thank Maurizia Rossi for several fruitful discussions.

Funding

Giovanni Peccati is partially supported by the FNR Grant HDSA (O21/16236290/HDSA) at Luxembourg University. Anna Vidotto is supported by the co-financing of the European Union—FSE-REACT-EU, PON Research and Innovation 2014-2020, DM 1062/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Peccati.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1.3

According to Proposition 1.2, the random field \(X_E\) converges in the sense of finite-dimensional distributions to \(\textbf{W}\), and moreover one has that

$$\begin{aligned} \sup _{E>0, \, \textbf{t}\in [0,1]^2} {\mathbb {E}}\left[ X_E(\textbf{t})^2\right] <\infty , \quad \text{ and } \quad {\mathbb {E}}\left[ X_E(\textbf{t})^2\right] \rightarrow {\mathbb {E}}\left[ \textbf{W}(\textbf{t})^2\right] , \end{aligned}$$

where the first relation follows from the computations contained in [31, Sections 6 and 7], and the second one takes place as \(E\rightarrow \infty \), for all \(\textbf{t}\in [0,1]^2\). As a consequence of these relations, we can apply [20, Theorem 4] and conclude that, if \(\psi \in {\mathcal {C}}_c^\infty (R)\), then

$$\begin{aligned} \int _R X_E(\textbf{t}) \psi (\textbf{t}) d\textbf{t} \xrightarrow []{d} \int _R \textbf{W}(\textbf{t}) \psi (\textbf{t}) d\textbf{t}. \end{aligned}$$
(A.1)

We now fix \(\varphi \in {\mathcal {C}}_c^\infty (R)\) and apply (A.1) to \(\psi (\textbf{t}) = \frac{\partial }{\partial t_1}\frac{\partial }{\partial t_2}\varphi (\textbf{t})\in {\mathcal {C}}_c^\infty (R)\), where \(\textbf{t} = (t_1,t_2)\), in such a way that \( \varphi (\textbf{t}) = \int _{(t_1, 1)\times (t_2, 1)} \psi (\textbf{z}) d\textbf{z}\). Applying a standard Fubini theorem on the left-hand side of (A.1) and a stochastic Fubini theorem (see [36, Theorem 5.13.1]) on the right-hand side yields that

$$\begin{aligned} \int _R X_E(\textbf{t}) \psi (\textbf{t}) d\textbf{t} = \langle \widetilde{{\mathscr {L}}}_E, \varphi \rangle , \quad \text{ and } \quad \int _R \textbf{W}(\textbf{t}) \psi (\textbf{t}) d\textbf{t} = \int _R \varphi (\textbf{z}) \textbf{W}(d\textbf{z}), \end{aligned}$$

where the last expression denotes a stochastic Wiener-Itô integral with respect to \(\textbf{W}\). The conclusion now follows from [16, Theorem III.6.5].

Appendix B: Proof of Lemma 1.4

Since \(U_n\) and \(V_n\) converge weakly to X and zero in \({\textbf{D}}_2\), respectively, we use for instance [44, Theorem 2], to deduce that, for every \(\varepsilon >0\),

$$\begin{aligned} \lim _{\delta \rightarrow 0} \limsup _{n\rightarrow \infty } {\mathbb {P}}\left\{ \omega _{\delta }(U_n)>\varepsilon \right\} = 0, \quad \lim _{\delta \rightarrow 0} \limsup _{n\rightarrow \infty } {\mathbb {P}}\left\{ \omega _{\delta }(V_n)>\varepsilon \right\} = 0 \end{aligned}$$
(B.1)

where \(\omega _{\delta }(f):= \sup \left\{ | f(\textbf{t}) - f(\textbf{s})|: \Vert \textbf{t}-\textbf{s}\Vert <\delta \right\} \). To obtain the desired conclusion, by virtue of the discussion contained in [29, p.1291], it is sufficient to show that

$$\begin{aligned} \lim _{\delta \rightarrow 0} \limsup _{n\rightarrow \infty } {\mathbb {P}}\left\{ \omega _{\delta }(X_n)>\varepsilon \right\} = 0. \end{aligned}$$

By the triangle inequality, we can write for every \(\delta >0\),

$$\begin{aligned} \omega _{\delta }(X_n) = \omega _{\delta }(U_n+V_n+W_n) \le \omega _{\delta }(U_n) +\omega _{\delta }(V_n)+ \omega _{\delta }(W_n), \end{aligned}$$

in such a way that

$$\begin{aligned} {\mathbb {P}}\left\{ \omega _{\delta }(X_n)>\varepsilon \right\} \le {\mathbb {P}}\left\{ \omega _{\delta }(U_n)>\varepsilon /3\right\} + {\mathbb {P}}\left\{ \omega _{\delta }(V_n)>\varepsilon /3\right\} + {\mathbb {P}}\left\{ \omega _{\delta }(W_n)>\varepsilon /3\right\} . \end{aligned}$$

Using the estimate \(\omega _{\delta }(W_n) \le 2\sup _{\textbf{t}\in [0,1]^2} |W_n(\textbf{t})|\) and letting \(n\rightarrow \infty \) and \(\delta \rightarrow 0\) then implies the desired conclusion from (B.1) and assumption (iii) in the statement.

Appendix C: Moment Estimates for Suprema of Gaussian Fields

In what follows we consider a centred smooth stationary Gaussian field \(G=\left\{ G(x):x\in {\mathbb {R}}^d\right\} \) on \({\mathbb {R}}^d\) with covariance function \({\mathbb {E}}\left[ G(x)G(y)\right] =\kappa (x-y)\). For an integer \(j\ge 0\) and \({\mathcal {D}}\subset {\mathbb {R}}^d\), we write

$$\begin{aligned} \sigma ^2({\mathcal {D}};j):= \sup _{x\in {\mathcal {D}}} \sup _{|\alpha |\le j} {\mathbb {E}}\left[ (\partial _{\alpha } G(x))^2\right] , \end{aligned}$$

where \(\partial _{\alpha }G(x):= \partial ^{\alpha _1}_{x_1}\ldots \partial ^{\alpha _d}_{x_d}G(x)\), for \(\alpha :=(\alpha _1,\ldots , \alpha _d) \) with \(|\alpha |:= \sum _{k=1}^d \alpha _k\). Moreover, for \({\mathcal {D}}\subset {\mathbb {R}}^d\) and \(\varepsilon >0\), we write \({\mathcal {D}}^{(\varepsilon )}\) for the \(\varepsilon \)-enlargement of \({\mathcal {D}}\). Finally, we use the notation

$$\begin{aligned} \Vert f\Vert _{C^j({\mathcal {D}})}:= \sup _{x\in {\mathcal {D}}} \sup _{|\alpha |\le j} |\partial _{\alpha } f(x)| \end{aligned}$$

for \(f:{\mathbb {R}}^d\rightarrow {\mathbb {R}}\). The goal of this section is to prove Proposition 3.6, whose statement we recall for convenience.

Proposition C.1

Let the above setting prevail. Assume that for every \(m\ge 0\), there exists \({\tilde{\sigma }}^2(m)<\infty \) such that

$$\begin{aligned} {\mathbb {E}}\left[ (\partial _{\alpha } G(x))^2\right] \le {\tilde{\sigma }}^2(m), \quad \forall \alpha \in {\mathbb {N}}^d, |\alpha |\le m. \end{aligned}$$
(C.1)

Then, for every \(p\ge 1\) and \(j\ge 0\)

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathcal {D}})}^p\right] \le C \left\{ \log (\textrm{vol}({\mathcal {D}}))\right\} ^{p/2} \end{aligned}$$

where \(C>0\) is an absolute constant depending on p and j, and \(\textrm{vol}({\mathcal {D}})\) is the d-dimensional volume of \({\mathcal {D}}\).

We remark that assumption (C.1) in particular implies that \(\sigma ^2({\mathcal {D}};j) \le {\tilde{\sigma }}^2(j)\) for every \(j\ge 0\).

1.1 C.1: Proof of Proposition C.1

The proof of Proposition C.1 is based on several classical concentration inequalities for suprema of Gaussian fields, that we state here below. The first statement is an estimate for the first moment of \(\Vert G\Vert _{C^j({\mathcal {D}})}\) (see [32, Appendix A.9]).

Proposition C.2

Let the above setting prevail.

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathcal {D}})}\right] \le c_1({\mathcal {D}}) \sigma ({\mathcal {D}}^{(1)};j+1), \end{aligned}$$
(C.2)

where \(c_1({\mathcal {D}})\) is a constant depending on \({\mathcal {D}}\).

The following inequality is the so-called Borell-TIS inequality applied to the Gaussian field \(\partial _{\alpha }G\), see for instance [42, Theorem 2.1.1].

Proposition C.3

For every \(\alpha \in {\mathbb {N}}^d\) and \(u>0\), we have

$$\begin{aligned} {\mathbb {P}}\left\{ \sup _{x\in D} \partial _{\alpha } G(x) > {\mathbb {E}}\left[ \sup _{x\in {\mathcal {D}}} \partial _{\alpha } G(x)\right] + u\right\} \le e^{-\frac{u^2}{2 \sigma ^2({\mathcal {D}};|\alpha |)}}. \end{aligned}$$
(C.3)

Combining the contents of Propositions C.2 and C.3, we deduce that for every \(\alpha \in {\mathbb {N}}^d\) with \(|\alpha |\le j\) and \(u>0\)

$$\begin{aligned} {\mathbb {P}}\left\{ \sup _{x\in {\mathcal {D}}} \partial _{\alpha } G(x) > c_1({\mathcal {D}}) {\tilde{\sigma }}(j+1)+u \right\} \le e^{-\frac{u^2}{2{\tilde{\sigma }}^2(j+1)}} \end{aligned}$$

which implies (by symmetry)

$$\begin{aligned} {\mathbb {P}}\left\{ \sup _{x\in {\mathcal {D}}} |\partial _{\alpha } G(x)| > c_1({\mathcal {D}}) {\tilde{\sigma }}(j+1)+u \right\} \le 2e^{-\frac{u^2}{2{\tilde{\sigma }}^2(j+1)}}. \end{aligned}$$

Therefore summing over all possible \(\alpha \) with \(|\alpha |\le j\),

$$\begin{aligned} {\mathbb {P}}\left\{ \Vert G\Vert _{C^j({\mathcal {D}})} > c_1({\mathcal {D}}) {\tilde{\sigma }}(j+1)+u \right\} \le k(j,d) e^{-\frac{u^2}{2\sigma ^2(j+1)}} \end{aligned}$$
(C.4)

where \(k(j,d):=2\textrm{card}\left\{ \alpha \in {\mathbb {N}}^d: |\alpha |=j\right\} \).

We can now prove Proposition C.1.

Proof of Proposition C.1

By stationarity of G it follows that, if \({\mathcal {D}}'\) is a translation of \({\mathcal {D}}\), then necessarily \(c_1({\mathcal {D}})=c_1({\mathcal {D}}')\), where \(c_1({\mathcal {D}})\) is the constant appearing in (C.2). In particular, applying (C.2) in the case where \({\mathcal {D}}\) is a ball \({\mathbb {B}}\) with unit radius and exploiting the moment assumption (C.1) on G, we deduce that

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathbb {B}})}\right] \le c_1 {\tilde{\sigma }}(j+1), \end{aligned}$$

where \(c_1\) is a universal constant. Therefore, applying (C.4) with \({\mathcal {D}}={\mathbb {B}}\) yields

$$\begin{aligned} {\mathbb {P}}\left\{ \Vert G\Vert _{C^j({\mathbb {B}})}> c_1 {\tilde{\sigma }}(j+1)+u \right\} \le k(j,d) e^{-\frac{u^2}{2{\tilde{\sigma }}^2(j+1)}}, \quad u>0. \end{aligned}$$

Now, using the above inequality with \(u=t-c_1 {\tilde{\sigma }}(j+1)\), we can write for every \(b>0\) (setting \(k:=k(j,d), {\tilde{\sigma }}:={\tilde{\sigma }}(j+1)\)),

$$\begin{aligned} {\mathbb {E}}\left[ e^{b \Vert G\Vert _{C^j({\mathbb {B}})}}\right]= & {} 1+ b\int _{0}^{\infty } e^{tb}{\mathbb {P}}\left\{ \Vert G\Vert _{C^j({\mathbb {B}})}> c_1 {\tilde{\sigma }} +(t-c_1 {\tilde{\sigma }}) \right\} dt \nonumber \\= & {} e^{b c_1 {\tilde{\sigma }}} + b\int _{c_1{\tilde{\sigma }}}^{\infty } e^{tb}{\mathbb {P}}\left\{ \Vert G\Vert _{C^j({\mathbb {B}})} > c_1 {\tilde{\sigma }} +(t-c_1 {\tilde{\sigma }}) \right\} dt \nonumber \\\le & {} e^{b c_1 {\tilde{\sigma }}} + bk\int _{c_1{\tilde{\sigma }}}^{\infty } e^{tb} e^{-\frac{(t-c_1{\tilde{\sigma }})^2}{2{\tilde{\sigma }}^2}} dt \le e^{b c_1 {\tilde{\sigma }}} + bk\int _{{\mathbb {R}}} e^{tb} e^{-\frac{(t-c_1{\tilde{\sigma }})^2}{2{\tilde{\sigma }}^2}} dt \nonumber \\= & {} e^{b c_1 {\tilde{\sigma }}} + bk \sqrt{2\pi } {\tilde{\sigma }}{\mathbb {E}}\left[ e^{bZ}\right] , \quad Z \sim {\mathcal {N}}(c_1{\tilde{\sigma }},{\tilde{\sigma }}^2) \nonumber \\= & {} e^{b c_1 {\tilde{\sigma }}}+ bk \sqrt{2\pi } {\tilde{\sigma }}\left( e^{bc_1{\tilde{\sigma }}+b^2{\tilde{\sigma }}^2/2} \right) = e^{bc_1 {\tilde{\sigma }}} (1+bk\sqrt{2\pi } {\tilde{\sigma }}e^{b^2{\tilde{\sigma }}^2/2}) \nonumber \\\le & {} e^{bc_1 {\tilde{\sigma }} + b^2 {\tilde{\sigma }}^2/2}(1+bk\sqrt{2\pi } {\tilde{\sigma }}) \le e^{bc_1 {\tilde{\sigma }} + b^2 {\tilde{\sigma }}^2/2+bk\sqrt{2\pi } {\tilde{\sigma }}}\nonumber \\= & {} e^{b{\tilde{\sigma }}(c_1 +k\sqrt{2\pi } ) + b^2 {\tilde{\sigma }}^2/2}, \end{aligned}$$
(C.5)

where we used that \(1+x\le e^x\). Now for \({\mathcal {D}}\subset {\mathbb {R}}^d\) we denote by \(N_{{\mathcal {D}}}\) the minimal number of unit balls needed to cover \({\mathcal {D}}\) and by \({\mathcal {B}}_{{\mathcal {D}}}:=\left\{ {\mathbb {B}}_1,\ldots , {\mathbb {B}}_{N_{{\mathcal {D}}}}\right\} \) the collection of all unit balls covering \({\mathcal {D}}\) in such a way that \(\textrm{card}({\mathcal {B}}_{{\mathcal {D}}})=N_{{\mathcal {D}}}\). Then, we have that, for every \(b>0\)

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathcal {D}})}\right]= & {} {\mathbb {E}}\left[ \log \exp (b^{-1}b\Vert G\Vert _{C^j({\mathcal {D}})} )\right] = b^{-1} {\mathbb {E}}\left[ \log e^{b \Vert G\Vert _{C^j({\mathcal {D}})} }\right] \\\le & {} b^{-1} \log {\mathbb {E}}\left[ e^{b\Vert G\Vert _{C^j({\mathcal {D}})}}\right] \le b^{-1} \log \sum _{l=1}^{N_D} {\mathbb {E}}\left[ e^{b\Vert G\Vert _{C^j({\mathbb {B}}_l)}}\right] \\\le & {} b^{-1} \log \left( N_{{\mathcal {D}}} {\mathbb {E}}\left[ e^{b\Vert G\Vert _{C^j({\mathbb {B}}_1)}}\right] \right) \\\le & {} b^{-1} \log \left( N_{{\mathcal {D}}} e^{b{\tilde{\sigma }}(c_1 +k\sqrt{2\pi } ) + b^2 {\tilde{\sigma }}^2/2} \right) \qquad \textrm{using } C.5\\= & {} b^{-1}\log (N_{{\mathcal {D}}})+ {\tilde{\sigma }}(c_1 +k\sqrt{2\pi } )+ b\frac{{\tilde{\sigma }}^2}{2} =: h(b). \end{aligned}$$

Differentiating h with respect to b, we find that \(h(b)\le h(b_0)\) for \(b_0=\sqrt{2}\sqrt{\log ( N_{{\mathcal {D}}}})/{\tilde{\sigma }}\) and thus

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathcal {D}})}\right] \le h(b_0) = \sqrt{2}{\tilde{\sigma }}\sqrt{\log (N_{{\mathcal {D}}})}+ {\tilde{\sigma }}(c_1 +k\sqrt{2\pi } ) =: \mu . \end{aligned}$$
(C.6)

Now let \(p\ge 1\). Then, using the inequality

$$\begin{aligned} {\mathbb {P}}\left\{ \Vert G\Vert _{C^j({\mathcal {D}})}> \mu + u \right\} \le ke^{-\frac{u^2}{2{\tilde{\sigma }}^2}}, \quad u>0 \end{aligned}$$

together with (C.6), yields

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathcal {D}})}^p \right]= & {} p\int _{0}^{\infty } t^{p-1} {\mathbb {P}}\left\{ \Vert G\Vert _{C^j({\mathcal {D}})} > \mu + (t-\mu ) \right\} dt \\\le & {} \mu ^p + pk\int _{\mu }^{\infty } t^{p-1}e^{-\frac{(t-\mu )^2}{2{\tilde{\sigma }}^2}} dt \le \mu ^p + pk\int _{{\mathbb {R}}} |t|^{p-1}e^{-\frac{(t-\mu )^2}{2{\tilde{\sigma }}^2}} dt\\= & {} \mu ^p + pk \sqrt{2\pi }{\tilde{\sigma }}{\mathbb {E}}\left[ |Z|^{p-1}\right] , \qquad Z\sim {\mathcal {N}}(\mu ,{\tilde{\sigma }}^2). \end{aligned}$$

Now for \(Z\sim {\mathcal {N}}(\mu ,{\tilde{\sigma }}^2)\) and \(Z':= (Z-\mu )/{\tilde{\sigma }} \sim {\mathcal {N}}(0,1)\),

$$\begin{aligned} {\mathbb {E}}\left[ |Z|^{p-1}\right]{} & {} = {\tilde{\sigma }}^{p-1} {\mathbb {E}}\left[ |Z'+\mu /{\tilde{\sigma }}|^{p-1}\right] \\{} & {} \le 2^{p-2}{\tilde{\sigma }}^{p-1}\left( {\mathbb {E}}\left[ |Z'|^{p-1}\right] + (\mu /{\tilde{\sigma }})^{p-1} \right) \\{} & {} =: C_p({\tilde{\sigma }}^{p-1}+\mu ^{p-1}), \end{aligned}$$

where \(C_p:= 2^{p-2} {\mathbb {E}}\left[ |Z'|^{p-1}\right] \) depends only on p, so that

$$\begin{aligned} {\mathbb {E}}\left[ \Vert G\Vert _{C^j({\mathcal {D}})}^p \right] \le \mu ^p + pk \sqrt{2\pi }{\tilde{\sigma }}C_p ({\tilde{\sigma }}^{p-1}+\mu ^{p-1}). \end{aligned}$$

The conclusion follows from the definition of \(\mu \) in (C.6) and the fact that there are constants \(C_1,C_2>0\) such that \(C_1 \textrm{vol}({\mathcal {D}})\le N_{{\mathcal {D}}} \le C_2\textrm{vol}({\mathcal {D}})\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notarnicola, M., Peccati, G. & Vidotto, A. Functional Convergence of Berry’s Nodal Lengths: Approximate Tightness and Total Disorder. J Stat Phys 190, 97 (2023). https://doi.org/10.1007/s10955-023-03111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03111-9

Keywords

Mathematics Subject Classification

Navigation