Skip to main content
Log in

Differential Identities for the Structure Function of Some Random Matrix Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The structure function of a random matrix ensemble can be specified in terms of the covariance of the linear statistics \(\sum _{j=1}^N e^{i k_1 \lambda _j}\), \(\sum _{j=1}^N e^{-i k_2 \lambda _j}\) for Hermitian matrices, and the same with the eigenvalues \(\lambda _j\) replaced by the eigenangles \(\theta _j\) for unitary matrices. As such it can be written in terms of the Fourier transform of the density-density correlation \(\rho _{(2)}\). For the circular \(\beta \)-ensemble of unitary matrices, and with \(\beta \) even, we characterise the bulk scaling limit of \(\rho _{(2)}\) as the solution of a linear differential equation of order \(\beta + 1\)—a duality relates \(\rho _{(2)}\) with \(\beta \) replaced by \(4/\beta \) to the same equation. Asymptotics obtained in the case \(\beta = 6\) from this characterisation are combined with previously established results to determine the explicit form of the degree 10 palindromic polynomial in \(\beta /2\) which determines the coefficient of \(|k|^{11}\) in the small |k| expansion of the structure function for general \(\beta > 0\). For the Gaussian unitary ensemble we give a reworking of a recent derivation and generalisation, due to Okuyama, of an identity relating the structure function to simpler quantities in the Laguerre unitary ensemble first derived in random matrix theory by Brézin and Hikami. This is used to determine various scaling limits, many of which relate to the dip-ramp-plateau effect emphasised in recent studies of many body quantum chaos, and allows too for rates of convergence to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Duy Khanh Trinh (personal correspondence) has pointed out that the normalising factor \((-\kappa )^k\) on the RHS should be deleted and replaced by a factor of \(-(1/\kappa )\).

  2. The package Mathematica can verify this, but was unable to integrate the LHS independently.

References

  1. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  2. Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices. American Mathematical Society, Providence, RI (2011)

    Book  MATH  Google Scholar 

  3. Erdös, L., Yau, H.-T.: A Dynamical Approach to Random Matrix Theory, Courant Lecture Notes in Mathematics, vol. 28. American Mathematics Society, Providence (2017)

    Book  Google Scholar 

  4. Montgomery, H.L.: The pair correlation of zeros of the zeta function. In: Proc. Sympos. Pure Math., vol. 24. American Mathematical Society, Providence, RI, 181–193 (1973)

  5. Bohigas, O.: Compound nucleus resonances, random matrices, quantum chaos. In: Mezzadri, F., Snaith, N.C. (eds.) Recent Perspectives in Random Matrix Theory and Number theory. London Mathematical Society Lecture Note Series, vol. 322, pp. 147–183. Cambridge University Press, Cambridge (2005)

    Chapter  MATH  Google Scholar 

  6. Dyson, F.J., Mehta, M.L.: Statistical theory of energy levels of complex systems. IV. J. Math. Phys. 4, 701–712 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Leblé, T.: CLT for fluctuations of linear statistics in the Sine-\(\beta \) process. Int. Math. Res. Not. 2019, 020 (2019)

    Google Scholar 

  8. Lambert, G.: Mesoscopic central limit theorem for the circular ensembles and applications. Electron. J. Probab. 26, 1–33 (2021)

    Article  MathSciNet  Google Scholar 

  9. Forrester, P.J., Jancovici, B., McAnally, D.S.: Analytic properties of the structure function for the one-dimensional one-component log-gas. J. Stat. Phys. 102, 737–780 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Witte, N.S., Forrester, P.J.: Moments of the Gaussian \(\beta \) ensembles and the large \(N\) expansion of the densities. J. Math. Phys. 55, 083302 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Riser, R., Osipov, V.A., Kanzieper, E.: Power spectrum of long eigenlevel sequences in quantum chaotic systems. Phys. Rev. Lett. 118, 204101 (2017)

    Article  ADS  Google Scholar 

  12. Riser, R., Osipov, V.A., Kanzieper, E.: Nonperturbative theory of power spectrum in complex systems. Ann. Phys. 413, 168065 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cotler, J.S., Gur-Ari, G., Hanada, M., Polchinski, J., Saad, P., Shenker, S.H., Stanford, D., Streicher, A., Tezuka, M.: Black holes and random matrices. JHEP 1705, 118 (2017). Erratum: [JHEP 1809 (2018), 002]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. del Campo, A., Molina-Vilaplana, J., Sonner, J.: Scrambling the spectral form factor: unitarity constraints and exact results. Phys. Rev. D 95, 126008 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yan, C.: Spectral form factor. [web resource dated June 28, 2020]

  16. Cotler, J.S., Hunter-Jones, N., Liu, J., Yoshida, B.: Chaos, complexity, and random matrices. JHEP 1711, 048 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Torres-Herrera, E.J., García-García, A.M., Santos, L.F.: Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B 97, 060303 (2018)

    Article  ADS  Google Scholar 

  18. Chenu, A., Molina-Vilaplana, J., del Campo, A.: Work statistics, Loschmidt echo and information scrambling in chaotic quantum systems. Quantum 3, 127 (2019)

    Article  Google Scholar 

  19. Cotler, J.S., Hunter-Jones, N.: Spectral decoupling in many-body quantum chaos. arXiv:1911.02026

  20. Xu, Z., Chenu, A., Prosen, T., del Campo, A.: Thermofield dynamics: quantum chaos versus decoherence. Phys. Rev. B 103, 064309 (2021)

    Article  ADS  Google Scholar 

  21. Leviandier, L., Lombardi, M., Jost, R., Pique, J.P.: Fourier transform: a tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56, 2449 (1986)

    Article  ADS  Google Scholar 

  22. Brézin, E., Hikami, S.: Spectral form factor in a random matrix theory. Phys. Rev. E 55, 4067–4083 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  23. Okuyama, K.: Spectral form factor and semi-circle law in the time direction. JHEP 2019, 161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Forrester, P.J.: Recurrence equations for the computation of correlations in the \(1/r^2\) quantum many body system. J. Stat. Phys. 72, 39–50 (1993)

    Article  ADS  MATH  Google Scholar 

  25. Kaneko, J.: Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math. Anal. 24, 1086–1110 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Forrester, P.J.: Addendum to Selberg correlation integrals and the \(1/r^2\) quantum many body system. Nucl. Phys. B 416, 377–385 (1994)

    Article  ADS  Google Scholar 

  27. Forrester, P.J., Rains, E.M.: A Fuchsian matrix differential equation for Selberg correlation integrals. Commun. Math. Phys. 309, 771–792 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Rahman, A.A., Forrester, P.J.: Linear differential equations for the resolvents of the classical matrix ensembles. Random Matrices Th. Appl. (2020). https://doi.org/10.1142/S2010326322500034

  29. Forrester, P.J., Trinh, A.K.: Functional form for the leading correction to the distribution of the largest eigenvalue in the GUE and LUE. J. Math. Phys 59, 053302 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kumar, S.: Recursion for the smallest eigenvalue density of beta-Wishart–Laguerre Ensemble. J. Stat. Phys. 175, 126 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Forrester, P.J., Trinh, A.K.: Finite-size corrections at the hard edge for the Laguerre \(\beta \) ensemble. Stud. Appl. Math. 143, 315–336 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Forrester, P.J., Kumar, S.: Recursion scheme for the largest \(\beta \)–Wishart–Laguerre eigenvalue and Landauer conductance in quantum transpor. J. Phys. A 52, 42LT02 (2019)

    Article  Google Scholar 

  33. Forrester, P.J., Li, S.-H., Trinh, A.K.: Asymptotic correlations with corrections for the circular Jacobi \(\beta \)-ensemble. arXiv:2008.13124

  34. Forrester, P.J., Witte, N.S.: Application of the \(\tau \)-function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, 29–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Forrester, P.J., Rahman, A.A., Witte, N.S.: Large \(N\) expansions for the Laguerre and Jacobi \(\beta \) ensembles from the loop equations. J. Math. Phys. 58, 113303 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Dumitriu, I., Paquette, E.: Global fluctuations for linear statistics of \(\beta \) Jacobi ensembles. Rand. Matrices Theory Appl. 01, 1250013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Forrester, P.J.: Exact integral formulas and asymptotics for the correlations in the \(1/r^2\) quantum many body system. Phys. Lett. A 179, 127–130 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  38. Witte, N.S., Forrester, P.J.: Loop equation analysis of the circular ensembles. JHEP 2015, 173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ha, Z.N.C.: Fractional statistics in one dimension: View from an exactly solvable model. Nucl. Phys. B 435, 604–636 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Haagerup, U., Thorbjørnsen, S.: Random matrices with complex Gaussian entries. Expo. Math. 21, 293–337 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ledoux, M.: Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials. The continuous case, Electron. J. Probab. 9, 177–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Götze, F., Tikhomirov, A.: The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math. 3, 666–704 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ullah, N.: Probability density function of the single eigenvalue outside the semicircle using the exact Fourier transform. J. Math. Phys. 26, 2350–2351 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  45. Drukker, N., Gross, D.J.: An exact prediction of \(N=4\) SUSYM theory for string theory. J. Math. Phys. 42, 2896–2914 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Bencheikh, K., Nieto, L.M.: On the density profile in Fourier space of harmonically confined ideal quantum gases in \(d\) dimensions. J. Phys. A 40, 13503–13510 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. van Zyl, B.P.: Wigner distribution for a harmonically trapped gas of ideal fermions and bosons at arbitrary temperature and dimensionality. J. Phys. A 45, 315302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Forrester, P.J.: Moments of the ground state density for the \(d\)-dimensional Fermi gas in an harmonic trap. Random Matrices Th.Appl. (2020). https://doi.org/10.1142/S2010326321500180

  49. Okuyama, K.: Connected correlator of 1/2 BPS Wilson loops in \({\cal{N}} = 4\) SYM. JHEP 2018, 037 (2018)

    Article  MathSciNet  Google Scholar 

  50. Cunden, F.D., Mezzadri, F., O’Connell, N., Simm, N.: Moments of random matrices and hypergeometric orthogonal polynomials. Commun. Math. Phys. 369, 1091–1145 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Haagerup, U., Thornbjornsen, S.: mptotic expansions for the Gaussian unitary ensemble. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15, 1250003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence, RI (1975)

    MATH  Google Scholar 

  53. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Akemann, G., Damgaard, P.H.: Wilson loops in N=4 supersymmetric Yang–Mills theory from random matrix theory. Phys. Lett. B 513, 179–186 (2001). Erratum: [Phys. Lett. B 524, (2002) 400

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Giombi, S., Pestun, V., Ricci, R.: Notes on supersymmetric Wilson loops on a two-sphere. JHEP 1007, 088 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Canazas Garary, A.F., Faraggi, A., Mück, W.: Note on generating functions and connected correlators of \(1/2\)-BPS Wilson loops in \({\cal{N}} = 4\) SYM theory, JHEP 1908, 149 (2019)

  57. Brézin, E., Hikami, S.: Random Matrix Theory with an External Source. Springer, Singapore (2016)

    Book  MATH  Google Scholar 

  58. Forrester, P.J., Frankel, N.E., Garoni, T.M.: Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry. J. Math. Phys. 47, 023301 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Moecklin, E.: Asymptotische entwicklungen der laguerreschen polynome. Commun. Math. Helv. 7, 24–46 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  60. Forrester, P.J.: Spectral density asymptotics for Gaussian and Laguerre \(\beta \)-ensembles in the exponentially small region. J. Phys. A 45, 075206 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Okuyama, K.: Eigenvalue instantons in the spectral form factor of random matrix model. JHEP 2019, 147 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Liu, J.: Spectral form factors and late time quantum chaos. Phys. Rev. D 98, 086026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  63. Okounkov, A.: Generating functions for intersection numbers on moduli spaces of curves. Int. Math. Res. Not. 18, 933–957 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Okuyama, K., Sakai, K.: JT gravity, KdV equations and macroscopic loop operators. JHEP 2001, 156 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Brézin, E., Hikami, S.: Vertices from replica in a random matrix theory. J. Phys. A 40, 13545–13566 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is part of the program of study supported by the Australian Research Council Centre of Excellence ACEMS, and the Discovery Project grant DP210102887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Forrester.

Additional information

Communicated by Giulio Biroli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrester, P.J. Differential Identities for the Structure Function of Some Random Matrix Ensembles. J Stat Phys 183, 33 (2021). https://doi.org/10.1007/s10955-021-02767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02767-5

Navigation