Skip to main content
Log in

Linear Response Theory and Entropic Fluctuations in Repeated Interaction Quantum Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study linear response theory and entropic fluctuations of finite dimensional non-equilibrium Repeated Interaction Systems (RIS). More precisely, in a situation where the temperatures of the probes can take a finite number of different values, we prove analogs of the Green–Kubo fluctuation–dissipation formula and Onsager reciprocity relations on energy flux observables. Then we prove a Large Deviation Principle, or Fluctuation Theorem, and a Central Limit Theorem on the full counting statistics of entropy fluxes. We consider two types of non-equilibrium RIS: either the temperatures of the probes are deterministic and arrive in a cyclic way, or the temperatures of the probes are described by a sequence of i.i.d. random variables with uniform distribution over a finite set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, G.S.: Open quantum Markovian systems and the microreversibility. Z. Phys. 258, 409–422 (1973)

    MathSciNet  ADS  Google Scholar 

  2. Andrieux, D., Gaspard, P., Monnai, T., Tasaki, S.: The fluctuation theorem for currents in open quantum systems. New J. Phys. 11(4), 043014 (2009)

    ADS  Google Scholar 

  3. Attal, S., Joye, A.: Weak coupling and continuous limits for repeated quantum interactions. J. Stat. Phys. 126, 1241–1283 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  4. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7, 59–104 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  5. Ballesteros, M., Fraas, M., Fröhlich, J., Schubnel, B.: Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162, 924–958 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  6. Bauer, M., Bernard, D., et Benoist, T.: Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. Henri Poincaré 14, 639–679 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  7. Benoist, T., Jakšić, V., Panati, A., Pautrat, Y., Pillet, C.-A.: Full statistics of energy conservation in two-time measurement protocols. Phys. Rev. E 92(3), 032115 (2015)

    ADS  Google Scholar 

  8. Benoist, T., Panati, A., Pautrat, Y.: Heat conservation and fluctuations for open quantum systems in the two-time measurement picture. J. Stat. Phys. 178, 893–925 (2020)

    MathSciNet  MATH  ADS  Google Scholar 

  9. Benoist, T., Panati, A., Raquépas, R.: Control of fluctuations and heavy tails for heat variation in the two-time measurement framework. Ann. Henri Poincaré 20, 631–674 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  10. Bougron J.-F.: Etude des propriétés thermodynamiques hors-équilibre des systèmes quantiques en interactions répétées, PhD Thesis (2020)

  11. Bougron, J.-F., Joye, A., Pillet C.-A.: Markovian Random Repeated Interaction Systems, In preparation

  12. Bruneau, L.: Mixing properties of the one-atom maser. J. Stat. Phys. 155, 888–908 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Bruneau, L., De Bièvre, S., Pillet, C.-A.: Scattering induced current in a tight-binding band. J. Math. Phys. 52, 022109 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  14. Bruneau, L., Joye, A., Merkli, M.: Asymptotics of repeated interaction quantum systems. J. Funct. Anal. 239, 310–344 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Bruneau, L., Joye, A., Merkli, M.: Random repeated interaction quantum systems. Commun. Math. Phys. 284, 553–581 (2008)

    MathSciNet  MATH  ADS  Google Scholar 

  16. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55, 075204 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Bruneau, L., Pillet, C.-A.: Thermal relaxation of a QED cavity. J. Stat. Phys. 134(5–6), 1071–1095 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  18. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. Probab. Lett. 18, 253–256 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Carbone, R., Pautrat, Y.: Irreducible decompositions and stationary states of quantum channels. Rep. Math. Phys. 77, 293–313 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions. Wiley, New-York (1992)

    Google Scholar 

  21. Dereziński, J., de Roeck, W., Maes, C.: Fluctuations of quantum currents and unravelings of master equations. J. Stat. Phys. 131, 341–356 (2008)

    MathSciNet  MATH  ADS  Google Scholar 

  22. de Roeck, W.: Large deviation generating function for currents in the Pauli–Fierz model. Rev. Math. Phys. 21, 549–585 (2009)

    MathSciNet  MATH  Google Scholar 

  23. de Roeck, W., Maes, C.: Steady state fluctuations of the dissipated heat for a quantum stochastic model. Rev. Math. Phys. 18, 619–653 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Davies, E.B., Spohn, H.: Open quantum systems with time-dependent Hamiltonians and their linear response. J. Stat. Phys. 19, 511–523 (1978)

    MathSciNet  ADS  Google Scholar 

  25. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer-Verlag, New-York (1998)

    MATH  Google Scholar 

  26. Ellis, R.S.: Entropy. Springer-Verlag Large Deviations and Statistical Mechanics. Springer, New York (1985)

    MATH  Google Scholar 

  27. Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665–1702 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  28. Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on C*-algebras. J. Lond. Math. Soc. 17, 345–355 (1978)

    MathSciNet  MATH  Google Scholar 

  29. Evans, D.E., Searles, D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994)

    ADS  Google Scholar 

  30. Fagnola, F., Rebolledo, R.: From classical to quantum entropy production. QP-P 25, 245–261 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Fagnola, F., Umanità, V.: Detailed balance, time reversal, and generators of quantum Markov semigroups. Math. Notes 84, 108–115 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Filipowicz, P., Javanainen, J., Meystre, P.: Theory of a microscopic maser. Phys. Rev. A 34(4), 3077–3087 (1986)

    ADS  Google Scholar 

  33. Gallavotti, G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  34. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    MathSciNet  MATH  ADS  Google Scholar 

  35. Guţă, M., Kiukas, J.: Equivalence classes and local asymptotic normality in system identification for quantum Markov chains. Commun. Math. Phys. 335(3), 1397–1428 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Hanson, E., Joye, A., Pautrat, Y., Raquépas, R.: Landauer’s principle in repeated interaction systems. Commun. Math. Phys. 349, 285–327 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  37. Haroche, S., Brune, M., Raimond, J.-M.: Experiments with single atoms in a cavity: entanglement, Schrödinger’s cats and decoherence. Phil. Trans. R. Soc. 355, 2367–2380 (1997)

    ADS  Google Scholar 

  38. Hiai, F., Mosonyi, M., Ogawa, T.: Large deviations and Chernoff bound for certain correlated states on a spin chain. J. Math. Phys. 48, 123301 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  39. van Horssen, M., Guţă, M.: Sanov and Central limit theorems for output statistics of quantum Markov chains. J. Math. Phys. 56, 022109 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  40. van Horssen, M., Guţă, M.: Large Deviations, Central Limit and dynamical phase transitions in the atom maser. arXiv preprint, arXiv:1206.4956 (2012)

  41. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green–Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265(3), 721–738 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  42. Jakšić, V., Ogata, Y., Pillet, C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123(3), 547–569 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  43. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green–Kubo formula for the spin-fermion system. Commun. Math. Phys. 268(2), 369–401 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  44. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green–Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  45. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics. An introduction., Quantum Theory Small Large Scales 95, 213–410 (2010)

    MATH  Google Scholar 

  46. Jakšić, V., Pautrat, Y., Pillet, C.-A.: Central limit theorem for locally interacting Fermi gas. Commun. Math. Phys. 285, 175–217 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  47. Jakšić, V., Pillet, C.-A.: A note on the Landauer principle in quantum statistical mechanics. J. Math. Phys. 55, 075210 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  48. Jakšić, V., Pillet, C.-A., Rey-Bellet, L.: Entropic fluctuations in statistical mechanics. I. Classical dynamical systems., Nonlinearity 24, 699–763 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  49. Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 54(1), 153–187 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  50. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1980)

    MATH  Google Scholar 

  51. Kossakowski, A., Frigerio, A., Gorini, V., Verri, M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57, 91–110 (1977)

    MathSciNet  MATH  ADS  Google Scholar 

  52. Kraus, K.: States, Effects and Operations, Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    MATH  Google Scholar 

  53. Kümmerer, B., Maassen, H.: A scattering theory for Markov chains. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 161–176 (2000)

    MathSciNet  MATH  Google Scholar 

  54. Kurchan, J.: A quantum fluctuation theorem, arXiv:cond-mat/0007360 (2000)

  55. Lebowitz, J., Spohn, H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)

    Google Scholar 

  56. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    MathSciNet  MATH  ADS  Google Scholar 

  57. Majewski, W.-A.: The detailed balance condition in quantum statistical mechanics. J. Math. Phys. 25, 614–616 (1984)

    MathSciNet  ADS  Google Scholar 

  58. Meschede, D., Walther, H., Müller, G.: One-atom maser. Phys. Rev. Lett. 54(6), 551–554 (1985)

    ADS  Google Scholar 

  59. Nechita, I., Pellegrini, C.: Random repeated quantum interactions and random invariant states. Prob. Theory Relat. Fields. 152, 299–320 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Pellegrini, C.: Markov chain approximations of jump-diffusion stochastic master equations. Ann. Inst. Henri Poincaré Prob. Stat. 46, 924–948 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  61. Pellegrini, C., Petruccione, F.: Non Markovian quantum repeated interactions. J. Phys. A 42, 425304 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  62. Raimond, J.-M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    MathSciNet  MATH  ADS  Google Scholar 

  63. Tasaki, H.: Jarzynski Relations for Quantum Systems and Some Applications, arXiv:cond-mat/0009244 (2000)

  64. Wellens, T., Buchleitner, A., Kümmerer, B., Maassen, H.: Quantum state preparation via asymptotic completeness. Phys. Rev. Lett. 85, 3361–3364 (2000)

    ADS  Google Scholar 

  65. Wolf, M.M.: Quantum Channels and Operations: A Guided Tour. Lecture notes based on a course given at the Niels-Bohr Institute. https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf (2012)

Download references

Acknowledgements

This research was supported by the Agence Nationale de la Recherche through the grant NONSTOPS (ANR-17-CE40-0006) and by the Initiative d’excellence Paris-Seine. The research of JFB is partially funded by the Cross Disciplinary Program “Quantum Engineering Grenoble”. LB warmly thanks UMI-CRM of Montreal for financial support and McGill University for its hospitality during an earlier stage of this work. We thank the anonymous referees for their constructive remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bruneau.

Additional information

Communicated by Yoshiko Ogata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougron, JF., Bruneau, L. Linear Response Theory and Entropic Fluctuations in Repeated Interaction Quantum Systems. J Stat Phys 181, 1636–1677 (2020). https://doi.org/10.1007/s10955-020-02640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02640-x

Keywords

Navigation