Skip to main content
Log in

On the Law of Large Numbers for the Empirical Measure Process of Generalized Dyson Brownian Motion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the generalized Dyson Brownian motion (GDBM) of an interacting N-particle system with logarithmic Coulomb interaction and general potential V. Under reasonable condition on V, we prove the existence and uniqueness of strong solution to SDE for GDBM. We then prove that the family of the empirical measures of GDBM is tight on \(\mathcal {C}([0,T],\mathscr {P}(\mathbb {R}))\) and all the large N limits satisfy a nonlinear McKean–Vlasov equation. Inspired by previous works due to Biane and Speicher, Carrillo, McCann and Villani, and Blower, we prove that the McKean–Vlasov equation is indeed the gradient flow of the Voiculescu free entropy on the Wasserstein space of probability measures over \(\mathbb {R}\). Using the optimal transportation theory, we prove that if \(V''\ge K\) for some constant \(K\in \mathbb {R}\), the McKean–Vlasov equation has a unique weak solution in the space of probability measures \(\mathscr {P}(\mathbb {R})\). This establishes the Law of Large Numbers and the propagation of chaos for the empirical measures of GDBM with non-quadratic external potentials which are not necessarily convex. Finally, we prove the longtime convergence of the McKean–Vlasov equation for \(C^2\)-convex potentials V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [34], Rogers and Shi proved the non-explosion of GDBM for V satisfying \(-xV'(x)\le \gamma \), \(\forall x\in \mathbb {R}\).

References

  1. Ambrosio, L., Gigli, N., Savré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser-Verlag, Berlin (2005)

    Google Scholar 

  2. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  3. Biane, P.: Free Brownian motions, free stochastic calculus and random matrices. In: Voiculescu, D.V. (ed.) Free Probability Theory, pp. 1–19. American Mathematical Society, Providence (1995)

    Google Scholar 

  4. Biane, P.: Logarithmic Sobolev inequalities, matrix models and free entropy. Acta. Math. Sin. 19(3), 497–506 (2003)

    Article  MathSciNet  Google Scholar 

  5. Biane, P., Speicher, R.: Free diffusions, free energy and free Fisher information. Ann. Inst. H. Poincaré Probab. Stat. 37, 581–606 (2001)

    Article  ADS  Google Scholar 

  6. Blower, G.: Displacement convexity for the generalized orthogonal ensemble. J. Stat. Phys. 116(5/6), 1359–1387 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Blower, G.: Random Matrices: High Dimensional Phenomena, London Math. Soc., Lect. Notes Ser. 367, Cambridge University Press, Cambridge (2009)

  8. Boutet de Monvel, A., Pastur, L., Shcherbina, M.: On the statistical mechanics approach in the random matrix theory: Integrated Density of States. J. Stat. Phys. 79, 585–611 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  10. Carlen, E.A., Gangbo, W.: Constrained steepest descent in the 2-Wasserstein metric. Ann. Math 157, 807–846 (2003)

    Article  MathSciNet  Google Scholar 

  11. Carrillo, J., McCann, R., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19, 971–1018 (2003)

    Article  MathSciNet  Google Scholar 

  12. Cépa, E., Lépingle, D.: Diffusing particles with electrostatic repulsion. Probab. Theory Relat. Fields 107(4), 429–449 (1997)

    Article  MathSciNet  Google Scholar 

  13. Chan, T.: The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Relat. Fields 93, 249–272 (1992)

    Article  MathSciNet  Google Scholar 

  14. Chekhov, L., Makeenko, Yu.: The multicritical Kontsevich–Penner model. Mod. Phys. Lett. A. 7(14), 1223–1236 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Donati-Martin, C., Groux, B.: Benjamin, Maïda, Convergence to equilibrium in the free Fokker-Planck equation with a double-well potential. Ann. Inst. Henri Poincaré Probab. Stat. 54(4), 1805–1818 (2018)

    Article  MathSciNet  Google Scholar 

  17. Dyson, F.J.: Statistical theory of the energy levels of complex systems. I, II, and III. J. Math. Phys. 3. 140–156, 157–165, 166–175 (1962)

  18. Dyson, F.J.: A Brownian-motion model of the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  Google Scholar 

  20. Fontbona, J.: Nonlinear martingale problems involving singular integrals. J. Funct. Anal. 200, 198–236 (2003)

    Article  MathSciNet  Google Scholar 

  21. Fontbona, J.: Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion. Stoch. Process. Appl. 112, 119–144 (2004)

    Article  MathSciNet  Google Scholar 

  22. Graczyk, P., Maecki, J.: Multidimensional Yamada-Watanabe theorem and its applications to particle systems. J. Math. Phys. 54(021503), 1–15 (2013)

    MathSciNet  Google Scholar 

  23. Guionnet, A.: Large Random Matrices: Lectures on Macroscopic Asymptotics. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Publishing Company, Amsterdam (1981)

    MATH  Google Scholar 

  25. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151–204 (1998)

    Article  MathSciNet  Google Scholar 

  26. Ledoux, M., Popescu, I.: Mass transportation proofs of free functional inequalities, and free Poincaré inequalities. J. Funct. Anal. 257, 1175–1221 (2009)

    Article  MathSciNet  Google Scholar 

  27. Li, S., Li, X., Xie, Y.: Matrix diffusion processes and the generalized Dyson Brownian motion, in preparation

  28. McCann, R.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  Google Scholar 

  29. Mehta, M.: Random Matrices, 3rd edn. Elsevier, Singapore (2006)

    Google Scholar 

  30. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Parial Differ. Equ. 26(1/2), 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  31. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  Google Scholar 

  32. Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices, American Mathematical Society, Mathematical Surveys and Monographs (2010)

  33. Prevot, C., Rockner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  34. Rogers, L.C.G., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)

    Article  MathSciNet  Google Scholar 

  35. Staff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (2013)

    Google Scholar 

  36. Sznitman, A.: Topics in Propagation of Chaos. Lecture Notes in Mathematics, vol. 1464, pp. 164–251. Springer, Berlin (1991)

    MATH  Google Scholar 

  37. Tao, T.: Topics in Random Matrices Theory, Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  38. Villani, C.: Topics in Mass Transportation. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  39. Villani, C.: Optimal Transport. Springer, Berlin (2009)

    Book  Google Scholar 

  40. Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math. 104, 201–220 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. Voiculescu, D.: The analogues of entropy and of fisher information measure in free probability theory, I. Commun. Math. Phys. 155, 71–92 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  42. Voiculescu, D.: Lectures on Free Probability Theory. Saint Flour Summer School, Lecture Notes in Mathematics. Springer, Berlin (1999)

    MATH  Google Scholar 

  43. Voiculescu, D.: The derivative of order $1/2$ of a free convolution by a semicircle distribution. Indiana Univ. Math. J. 46(3), 697–703 (1997)

    Article  MathSciNet  Google Scholar 

  44. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. (2) 67, 325–327 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the editor for his interest on this work, and to anonymous referees, who pointed out some technical problems in the earlier versions of this paper, and whose questions, comments and suggestions lead us to clarify and improve many places of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Li.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Songzi Li: Research supported by NSFC No. 11901569. Xiang-Dong Li: Research supported by NSFC No. 11771430, Key Laboratory RCSDS, CAS, No. 2008DP173182. Yong-Xiao Xie: Research supported by NSFC No. 11601287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, XD. & Xie, YX. On the Law of Large Numbers for the Empirical Measure Process of Generalized Dyson Brownian Motion. J Stat Phys 181, 1277–1305 (2020). https://doi.org/10.1007/s10955-020-02627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02627-8

Keywords

Navigation