Skip to main content
Log in

Dynamics for Spherical Spin Glasses: Disorder Dependent Initial Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive the thermodynamic limit of the empirical correlation and response functions in the Langevin dynamics for spherical mixed p-spin disordered mean-field models, starting uniformly within one of the spherical bands on which the Gibbs measure concentrates at low temperature for the pure p-spin models and mixed perturbations of them. We further relate the large time asymptotics of the resulting coupled non-linear integro-differential equations, to the geometric structure of the Gibbs measures (at low temperature), and derive their FDT solution (at high temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The conditioning on (1.16) is interpreted in the usual way: the conditional law of \(\mathbf{J}\) has density given, up to normalization, by the restriction of its original density to the appropriate affine subspace, and the conditional law of the independent \(\mathbf{B}\) is identical to the unconditional one.

  2. In the pure case, i.e. having \(\nu (r)=b_m^2 r^m\), one has that \(\partial _{\perp } H_{\mathbf{J}} ({\varvec{\sigma }}) = \frac{m}{\Vert {\varvec{\sigma }}\Vert } H_{\mathbf{J}}({\varvec{\sigma }})\), hence necessarily \({G_\star }=m {E_\star }/q_\star ^{2}\), whereas in the mixed case the vector \(({E_\star },{G_\star })\) can take any value.

  3. Alternatively \(\nabla H_{\mathbf{J}} ({\varvec{\sigma }}) = - {G_\star }{\varvec{\sigma }}\).

  4. It is easy to verify that in the mixed case the matrix in (1.22) is positive definite for any \(q_\star >0\), while in the pure case taking \(G=m E/q_\star ^2\) yields \(b_m^2 \langle {{\mathsf {v}}}_m, (E,G) \rangle = q_\star ^{-2m} E\).

  5. Except for \(\alpha = - q_\star \) equivalently holding whenever \(\nu (\cdot )\) is an even polynomial

  6. Which in the pure case is restricted to \(G=m E/ q_\star ^2\); see Footnote 2.

  7. In the sense that the law of this array, when interpreting \(\nabla _{\mathrm{sp}}^{2}H_{\mathbf{J}}({\varvec{\sigma }})\) as the corresponding upper triangular matrix, is absolutely continuous w.r.t. the Lebesgue measure on \(\mathbb {R}\times \mathbb {R}\times {\mathbb {R}}^{N-1}\times {\mathbb {R}}^{N(N-1)/2}\).

References

  1. Adler, R.J., Taylor, J.E.: Random fields and geometry, Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  2. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6, 170–176 (1955)

    Article  MathSciNet  Google Scholar 

  3. Ané, C. et altri: Sur les inégalités de Sobolev logarithmiques. Panoramas et Syntheses, 10, Société Mathématique de France (2000)

  4. Auffinger, A., Ben Arous, G.: Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab. 41(6), 4214–4247 (2013)

    Article  MathSciNet  Google Scholar 

  5. Auffinger, A., Ben Arous, G., Černý, J.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165–201 (2013)

    Article  MathSciNet  Google Scholar 

  6. Barrat, A., Burioni, R., Mézard, M.: Dynamics within metastable states in a mean-field spin glass. J. Phys. A 29, L81–L87 (1996)

    Article  ADS  Google Scholar 

  7. Barrat, A., Franz, S.: Basins of attraction of metastable states of the spherical \(p\)-spin model. J. Phys. A 31, L119–L127 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ben Arous, G., Dembo, A., Guionnet, A.: Aging of spherical spin glasses. Probab. Theory Relat. Fields 120, 1–67 (2001)

    Article  MathSciNet  Google Scholar 

  9. Ben Arous, G.: Aging and spin-glass dynamics. In: Proceedings of the International Congress of Mathematicians, Vol. III , 3–14, Higher Ed. Press, Beijing, 2002 (2002)

  10. Ben Arous, G., Dembo, A., Guionnet, A.: Cugliandolo-Kurchan equations for dynamics of Spin-Glasses. Probab. Theory Relat. Fields 136, 619–660 (2006)

    Article  MathSciNet  Google Scholar 

  11. Ben Arous, G., Gheissari, R., Jagannath, A.: Bounding flows for spherical spin glass dynamics. Commun. Math. Phys. 373, 1011–1048 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ben Arous, G., Jagannath, A.: Spectral gap estimates in mean field spin glasses. Commun. Math. Phys. 361, 1–52 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ben Arous, G., Subag, E., Zeitouni, O.: Geometry and temperature chaos in mixed spherical spin glasses at low temperature—the perturbative regime. Commun. Pure Appl. Math., to appear

  14. Berthier, L., Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  15. Bouchaud, J.P., Cugliandolo, L.F., Kurchan, J., Mezard, M.: Out of equilibrium dynamics in spin-glasses and other glassy systems. In: Young, A.P. (ed.) Spin Glass Dynamics and Random Fields. World Scientific, Singapore (1997)

    Google Scholar 

  16. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies. Mathematical surveys and monographs 196, (2014)

  17. Chen, W.-K.: The Aizenman-Sims-Starr scheme and Parisi formula for mixed \(p\)-spin spherical models. Electron. J. Probab. 18(94), 14 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Chen, W.-K., Panchenko, D., Subag, E.: The generalized TAP free energy. arXiv:1812.05066, (2018)

  19. Chen, W.-K., Panchenko, D., Subag, E.: The generalized TAP free energy II. arXiv:1903.01030, (2019)

  20. Crisanti, A., Horner, H., SOMMERS, H.-J.: The spherical p-spin interaction spin-glass model. Z. Phys. B 92, 257–271 (1993)

    Article  ADS  Google Scholar 

  21. Crisanti, A., Sommers, H.-J.: Thouless-Anderson-Palmer approach to the spherical \(p\)-spin spin glass model. J. Phys. I 5(7), 805–813 (1995)

    Google Scholar 

  22. Cugliandolo, L.F.: Course 7: Dynamics of glassy systems. In: Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, pp. 367–521. Springer (2003)

  23. Cugliandolo, L.F., Kurchan, J.: Analytical solution of the off-equilibrium Dynamics of a Long-Range Spin-Glass Model. Phys. Rev. Lett. 71, 173 (1993)

    Article  ADS  Google Scholar 

  24. Dembo, A., Guionnet, A., Mazza, C.: Limiting dynamics for spherical models of spin glasses at high temperature. J. Stat. Phys. 126, 781–816 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Folena, G., Franz, S., Ricci-Tersenghi, F.: Memories from the ergodic phase: the awkward dynamics of spherical mixed p-spin models. arXiv:1903.01421, (2019)

  26. Gheissari, R., Jagannath, A.: On the spectral gap of spherical spin glass dynamics. Ann. Henri Poincaré (B), to appear

  27. Guionnet, A., Mazza, C.: Long time behaviour of non-commutative processes solution of a linear differential equation. Prob. Theory. Rel. Fields 131, 493–518 (2005)

    Article  Google Scholar 

  28. Guionnet, A.: Dynamics for spherical models of sping glass and Aging. Proceedings of the Ascona Meeting (2004)

  29. Kurchan, J., Parisi, G., Virasoro, M.A.: Barriers and metastable states as saddle points in the replica approach. J. Phys. I 3, 1819–1838 (1993)

    Google Scholar 

  30. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: Nature of the spin-glass phase. Phys. Rev. Lett. 52(13), 1156–1159 (1984)

    Article  ADS  Google Scholar 

  31. Mézard, M., Parisi, G., Virasoro, M.A.: Solution of ‘Solvable model of a spin glass’. In: Spin Glass Theory and Beyond, World Scientific, Singapore (1987)

  32. Panchenko, D.: The Parisi ultrametricity conjecture. Ann. Math. 177(1), 383–393 (2013)

    Article  MathSciNet  Google Scholar 

  33. Subag, E.: Free energy landscapes in spherical spin glasses. arXiv:1804.10576. (2018)

  34. Subag, E.: The complexity of spherical \(p\)-spin models–a second moment approach. Ann. Probab. 45(5), 3385–3450 (2017)

    Article  MathSciNet  Google Scholar 

  35. Subag, E.: The geometry of the Gibbs measure of pure spherical spin glasses. Invent. Math. 210(1), 135–209 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Talagrand, M.: Free energy of the spherical mean field model. Probab. Theory Relat. Fields 134, 339–382 (2006)

    Article  MathSciNet  Google Scholar 

  37. Talagrand, M.: Construction of pure states in mean field models for spin glasses. Probab. Theory Relat. Fields 3–4(148), 601–643 (2010)

    Article  MathSciNet  Google Scholar 

  38. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of ‘Solvable model of a spin glass’. Philos. Mag. 35(3), 593–601 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliran Subag.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by BSF Grant 2014019 (A.D. & E.S.), NSF Grants #DMS-1613091, #DMS-1954337 (A.D), and the Simons Foundation (E.S.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembo, A., Subag, E. Dynamics for Spherical Spin Glasses: Disorder Dependent Initial Conditions. J Stat Phys 181, 465–514 (2020). https://doi.org/10.1007/s10955-020-02587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02587-z

Keywords

Mathematics Subject Classification

Navigation