Skip to main content
Log in

Generalized Stochastic Resonance for a Fractional Noisy Oscillator with Random Mass and Random Damping

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the random dichotomous fluctuations on both mass and damping in a fractional oscillator, which is subjected to an additive fractional Gaussian noise and driven by a periodic force. In order to investigate the generalized stochastic resonance (GSR) phenomena, we acquire the exact expression of the first-order moment of system’s steady response by applying generalized fractional Shapiro–Loginov formula and Laplace transform. Meanwhile, we discuss the evolutions of the output amplitude amplification (OAA) with driving frequency, noise parameters, fractional order, and damping strength. It is observed that the non-monotonic resonance behaviors of one-peak GSR, double-peak GSR and triple-peak GSR existing in this fractional system. Moreover, the interplay of mass fluctuation, damping fluctuation, and memory effect can generate a rich variety of non-equilibrium cooperation phenomena, especially the stochastic multi-resonance (SMR) behaviors. It is worth emphasizing that the triple-peak GSR was not observed in previously proposed fractional oscillator subjected to dichotomous noise. Finally, the numerical simulations are also carried out based on predictor-corrector approach to verify the effectiveness of analytic result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benzi, R., Sutera, A., Vulpliani, A.: The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14, L453–457 (1981)

    ADS  MathSciNet  Google Scholar 

  2. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    ADS  Google Scholar 

  3. Wellens, T., Shatokhin, V., Buchleitners, A.: Stochastic resonance. Rep. Prog. Phys. 67, 45–105 (2004)

    ADS  Google Scholar 

  4. Chapeau-Blondeau, F., Rousseau, D.: Noise improvements in stochastic resonance: from signal amplification to optimal detection. Fluct. Noise Lett. 2, L221–233 (2002)

    Google Scholar 

  5. Ai, B., Liu, L.: Stochastic resonance in a stochastic bistable system. J. Stat. Mech. 2007, P02019 (2007)

    MATH  Google Scholar 

  6. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Physica A 352, 309–334 (2005)

    ADS  Google Scholar 

  7. McNamara, B., Wiesenfeld, K., Roy, R.: Observation of stochastic resonance in a ring laser. Phys. Rev. Lett. 60, 2626–2629 (1988)

    ADS  Google Scholar 

  8. Metzler, R., Klafter, J.: The restaurant at the end of the randomwalk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161C208 (2004)

    MATH  Google Scholar 

  9. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501C535 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Deng, W., Barkai, E.: Ergodic properties of fractional Brownian Langevinmotion. Phys. Rev. E 79, 011112 (2009)

    ADS  MathSciNet  Google Scholar 

  11. Bao, J., Zhuo, Y.: Investigation on anomalous diffusion for nuclear fusion reactions. Phys. Rev. C 67, 233–234 (2003)

    Google Scholar 

  12. Goychuk, I.: Anomalous relaxation and dielectric response. Phys. Rev. E 76, 040102 (2007)

    ADS  Google Scholar 

  13. Lin, L., Zhou, X., Ma, H.: Subdiffusive transport of fractional two-headed molecular motor. Acta Phys. Sin. 62, 240501 (2013)

    Google Scholar 

  14. Achar, B.N.Narahari, Hanneken, J.W., Enck, T., Clarke, T.: Dynamics of the fractional oscillator. Physica A 297, 361–367 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Ryabov, Y.E., Puzenko, A.: Damped oscillations in view of the fractional oscillator equation. Phys. Rev. B 66, 553–562 (2002)

    Google Scholar 

  16. Sauga, A., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating mass. AIP Conf. Proc. 1487, 224 (2012)

    ADS  Google Scholar 

  17. Zhong, S., Wei, K., Gao, S., Ma, H.: Trichotomous noise induced resonance behavior for a fractional oscillator with random mass. J. Stat. Phys. 159, 195–209 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Zhong, S., Yang, J., Zhang, L., Ma, H., Luo, M.: Resonant behavior of a harmonic oscillator with fluctuating mass driven by a Mittag-Leffler noise. J. Stat. Mech. 2017, 023211 (2017)

    MathSciNet  Google Scholar 

  19. Huang, Z., Guo, F.: Stochastic resonance in a fractional linear oscillator subject to random viscous damping and signal-modulated noise. Chin. J. Phys. 54, 69–76 (2016)

    MathSciNet  Google Scholar 

  20. Ren, R., Luo, M., Deng, K.: Stochastic resonance in a fractional oscillator subjected to multiplicative trichotomous noise. Nonlinear Dyn. 90, 379–390 (2017)

    Google Scholar 

  21. Mankin, R., Kekker, A.: Memory-enhanced energetic stability for a fractional oscillator with fluctuating frequency. Phys. Rev. E 81, 041122 (2010)

    ADS  Google Scholar 

  22. Zhong, S., Zhang, L., Wang, H., Ma, H., Luo, M.: Nonlinear effect of time delay on the generalized stochastic resonance in a fractional oscillator with multiplicative polynomial noise. Nonlinear Dyn. 89, 1327–1340 (2017)

    MathSciNet  Google Scholar 

  23. Tian, Y., Zhong, L., He, G., Yu, T., Luo, M., Stanley, H.E.: The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise. Physica A 490, 845–856 (2018)

    ADS  MathSciNet  Google Scholar 

  24. He, G., Tian, Y., Wang, Y.: Stochastic resonance in a fractional oscillator with random damping strength and random spring stiffness. J. Stat. Mech. 2013, P09026 (2013)

    MathSciNet  Google Scholar 

  25. Lin, L., Chen, C., Wang, H.: Trichotomous noise induced stochastic resonant in a fractional oscillator with random damping and random frequency. J. Stat. Mech. 2016, 023201 (2016)

    Google Scholar 

  26. Burov, S., Gitterman, M.: Noisy oscillator: random mass and random damping. Phys. Rev. E 94, 052144 (2016)

    ADS  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, London (1958)

    MATH  Google Scholar 

  28. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    ADS  MATH  Google Scholar 

  29. Gitterman, M.: New type of Brownian motion. J. Stat. Phys. 146, 239–243 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Gitterman, M.: Stochastic oscillator with random mass: new type of Brownian motion. Physica A 395, 11–21 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Wang, H., Ni, F., Lin, L., Lv, W., Zhu, H.: Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions. Physica A 505, 124–135 (2018)

    ADS  MathSciNet  Google Scholar 

  32. Abdalla, M.S.: Time-dependent harmonic oscillator with variable mass under the action of a driving force. Phys. Rev. A 34, 4598–4605 (1986)

    ADS  Google Scholar 

  33. Ausloos, M., lambiotte, R.: Brownian particle having a fluctuating mass. Phys. Rev. E E73, 011105 (2006)

    ADS  Google Scholar 

  34. Dykman, M.I., Khasin, M., Portman, J., Shaw, S.W.: Spectrum of an oscillator with jumping frequency and the interference of partial susceptibilities. Phys. Rev. Lett. 105, 230601 (2010)

    ADS  Google Scholar 

  35. Gadomski, A., Siódmiak, J., Santamarìa-Holek, I., Rubì, J.M., Ausloos, M.: Kinetics of growth process controlled by mass-convective fluctuations and finite-size curvature effects. Acta Phys. Polon. B 36, 1537–1559 (2005)

    ADS  Google Scholar 

  36. West, B.J., Seshadri, V.: Model of gravity wave growth due to fluctuations in the air-sea coupling parameter. J. Geophys. Res. 86, 4293–4298 (1981)

    ADS  Google Scholar 

  37. Chomaz, J.M., Couarion, A.: Against the wind. Phys. Fluids 11, 2977–2983 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Helot, F., Libchaber, A.: Unidirectional crystal growth and crystal anisotropy. Phys. Scr T9, 126–129 (1985)

    ADS  Google Scholar 

  39. Saul, A., Showalter, K.: Oscillations and travel waves in chemical systems. Wiley, New York (1985)

    Google Scholar 

  40. Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001)

    ADS  Google Scholar 

  41. Burov, S., Barkai, E.: Fractional Langevin equation: overdamped, underdamped and critical behaviors. Phys. Rev. E 78, 031112 (2008)

    ADS  MathSciNet  Google Scholar 

  42. Ghosh, S.K., Cherstvy, A.G., Metzler, R.: Non-universal tracer difussion in crowded media of non-inert obstacles. Phys. Chem. Chem. Phys. 17, 1847–1858 (2015)

    Google Scholar 

  43. Liu, L., Cherstvy, A.G., Metzler, R.: Facilitated diffusion of transcription factor proteins with anomalous bulk diffusion. J. Phys. Chem. B. 121, 1284–1289 (2017)

    Google Scholar 

  44. Yu, T., Luo, M., Hua, Y.: The resonant behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys. Sin. 62, 210503 (2013)

    Google Scholar 

  45. Laas, K., Mankin, R.: Resonant behavior of a fractional oscillator with random damping. AIP Conf. Proc. 1404, 131–138 (2011)

    ADS  Google Scholar 

  46. Kou, S.C., Xie, X.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004)

    ADS  Google Scholar 

  47. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    ADS  Google Scholar 

  48. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  49. Shapiro, V.E., Loginov, V.M.: Formulae of differentiation and their use for solving stochastic equations. Physica A 91, 563–574 (1978)

    ADS  MathSciNet  Google Scholar 

  50. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and Systems. Prentice Hall, Xi’an (2012)

    Google Scholar 

  51. Burada, P.S., Schmid, G., Reguera, D., Rubi, J.M., Hänggi, P.: Double entropic stochastic resonance. Europhys. Lett. 87, 50003 (2009)

    ADS  Google Scholar 

  52. Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Deng, W.H., Barkai, E.: Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79, 011112 (2009)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11701086), the Natural Science Foundation of Fujian Province (No. 2017J01550), the China Postdoctoral Science Foundation funded project (No. 2016M602047), and the Basic and Cutting-edge Research Program of Chongqing (No. cstc2017jcyjAX0412). Also, special thanks should go to Prof. Giuseppe Gaeta at Department of Mathematics, the University of Milan.

Funding

This study was funded by the National Natural Science Foundation of China (No. 11701086), the Natural Science Foundation of Fujian Province (No. 2017J01550), the China Postdoctoral Science Foundation funded project (No. 2016M602047), and the Basic and Cutting-edge Research Program of Chongqing (No. cstc2017jcyjAX0412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Lin or Huiqi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The coefficients in Eq. (18)

Appendix: The coefficients in Eq. (18)

The coefficients in Eq. (18) are given by

$$\begin{aligned} \mu _1&=(f_5f_{17}-f_6f_{18})-f_{13}(f_7f_9-f_8f_{10})+f_{14}(f_7f_{10}+f_8f_9),\\ \mu _2&=(f_5 f_{18}+f_6f_{17})-f_{13}(f_7f_{10}+f_8f_9)-f_{14}(f_7f_9-f_8f_{10}),\\ \mu _3&=f_{17}f_{19}-f_{18}f_{20}+f_{21}+f_{23},\\ \mu _4&=f_{17}f_{20}+f_{18}f_{19}+f_{22}+f_{24}, \end{aligned}$$

in which, all the related parameters can be calculated by the following expressions:

$$\begin{aligned}&f_1=N+\gamma \Omega ^\alpha \cos \left( \frac{\pi }{2}\alpha \right) , \qquad \qquad \qquad \qquad \qquad \!\!\!\!\! f_2=\gamma \Omega ^\alpha \sin \left( \frac{\pi }{2}\alpha \right) ,\\&f_3=\gamma C_2^\alpha \cos \left( \alpha \theta _2\right) ,\qquad \qquad \qquad \qquad \qquad \qquad \!\! f_4=\gamma C_2^\alpha \sin (\alpha \theta _2),\\&f_5=\lambda _1^2 + N +\gamma C_1^\alpha \cos \left( \alpha \theta _1\right) ,\qquad \qquad \qquad \qquad \!\!\!\! f_6=2\lambda _1\Omega +\gamma C_1^\alpha \sin (\alpha \theta _1),\\&f_7=\gamma C_3^\alpha \cos (\alpha \theta _3),\qquad \qquad \qquad \qquad \qquad \quad \quad \quad \!\! \!\!\!\! f_8=\gamma C_3^\alpha \sin (\alpha \theta _3),\\&f_9=\lambda _2^2 +N+\gamma C_2^\alpha \cos (\alpha \theta _2),\qquad \qquad \qquad \qquad \!\!\! f_{10}=2\lambda _2\Omega +\gamma C_2^\alpha \sin (\alpha \theta _2),\\&f_{11}=\left( \lambda _1+\lambda _2 \right) ^2-\Omega ^2,\qquad \qquad \qquad \qquad \qquad \quad \!\!\! f_{12}=2(\lambda _1+\lambda _2)\Omega ,\\&f_{13}=\gamma \sigma _2^2C_1^\alpha \cos (\alpha \theta _1),\qquad \qquad \qquad \qquad \qquad \quad \!\! f_{14}=\gamma \sigma _2^2C_1^\alpha \sin (\alpha \theta _1),\\&f_{15}=(\lambda _1+\lambda _2)^2 +N+\gamma C_3^\alpha \cos (\alpha \theta _3),\qquad \qquad \! f_{16}=2(\lambda _1+\lambda _2)\Omega + \gamma C_3^\alpha \sin (\alpha \theta _3),\\&f_{17}=f_{9}f_{15}-f_{10}f_{16}-f_{11}\sigma _1^2(\lambda _2^2-\Omega ^2),\qquad \qquad \!\!\! f_{18}=f_{10}f_{15}+f_{9}f_{16}-\sigma _1^2\left[ f_{12}(\lambda _2^2-\Omega ^2)+2f_{11}\lambda _2\right] ,\\&f_{19}=f_5(N+f_1)-f_2f_6+\sigma _1^2\Omega ^2(\lambda _1^2-\Omega ^2),\quad \quad f_{20}=f_2f_5+f_6(N+f_1)+2\lambda _1\sigma _1^2\Omega ^3,\\ \end{aligned}$$
$$\begin{aligned} f_{21}&= (f_1f_{10}f_{14}+f_2f_9f_{14}+f_2 f_{10}f_{13}-f_1f_9f_{13})f_7+(f_1f_9f_{14}+f_1f_{10} f_{13}\\&+f_2f_9f_{13}-f_2f_{10}f_{14})f_8\\&-\sigma _1^2\sigma _2^2\left[ (\lambda _1^2-\Omega ^2)(\lambda _2^2-\Omega ^2)f_1-2\lambda _2(\lambda _1^2-\Omega ^2) \Omega f_2- 4\lambda _1\lambda _2\Omega ^2 f_1\right. \\&\left. -2\lambda _1(\lambda _2^2-\Omega ^2)\Omega f_2\right] f_7\\&+\sigma _1^2\sigma _2^2\left[ 2\lambda _2\Omega (\lambda _1^2-\Omega ^2) f_1+(\lambda _1^2-\Omega ^2) (\lambda _2^2-\Omega ^2)f_2 +2\lambda _1\Omega (\lambda _2^2-\Omega ^2) f_1\right. \\&\left. - 4\lambda _1\lambda _2\Omega ^2 f_2\right] f_8,\\ f_{22}&= (f_2 f_{10} f_{14}-f_1 f_9f_{14}-f_1f_{10}f_{13}-f_2 f_9f_{13})f_7+(f_1f_{10}f_{14}+f_2f_9f_{14}\\&+f_2f_{10}f_{13}-f_1f9 f_{13})f_8\\&-\sigma _1^2\sigma _2^2\left[ 2\lambda _2\Omega (\lambda _1^2-\Omega ^2) f_1+(\lambda _1^2-\Omega ^2) (\lambda _2^2-\Omega ^2) f_2 +2\lambda _1\Omega (\lambda _2^2-\Omega ^2)f_1\right. \\&\left. - 4\lambda _1\lambda _2\Omega ^2 f_2\right] f_7\\&-\sigma _1^2\sigma _2^2\left[ (\lambda _1^2-\Omega ^2)(\lambda _2^2-\Omega ^2)f_1-2\lambda _2(\lambda _1^2-\Omega ^2) \Omega f_2- 4\lambda _1\lambda _2 \Omega ^2 f_1 \right. \\&\left. - 2\lambda _1(\lambda _2^2-\Omega ^2)\Omega f_2\right] f_8,\\&f_{23}= \sigma _1^2\Omega ^2\left[ (f_{11}f_{13}-f_{12}f_{14})f_3\right. \\&\left. -(f_{11}f_{14}+f_{12}f_{13})f_4\right] \\&-\sigma _2^2f_3\left[ (f_5f_{15}-f_6f_{16})f_1-(f_5f_{16}+f_6f_{15})f_2-(f_1f_{13}-f_2f_{14})f_7\right. \\&\left. +(f_1f_{14}+f_2f_{13})f_8\right] \\&-\sigma _2^2f_4\left[ (f_5f_{15}-f_6f_{16})f_2-(f_5f_{16}+f_6f_{15})f_1+(f_1f_{14}+f_2f_{13})f_7\right. \\&\left. +(f_1f_{13}-f_2f_{14})f_8\right] \\ f_{24}&= \sigma _1^2\Omega ^2\left[ (f_{11}f_{14}+f_{12}f_{13})f_3\right. \\&\left. +(f_{11}f_{13}-f_{12}f_{14})f_4\right] \\&-\sigma _2^2f_3\left[ (f_5f_{15}-f_6f_{16})f_2+(f_5f_{16}+f_6f_{15})f_1-(f_1f_{14}+f_2f_{13})f_7\right. \\&\left. -(f_1f_{13}-f_2f_{14})f_8\right] \\&-\sigma _2^2f_4\left[ (f_5f_{15}-f_6f_{16})f_1-(f_5f_{16}+f_6f_{15})f_2-(f_1f_{13}-f_2f_{14})f_7\right. \\&\left. +(f_1f_{14}+f_2f_{13})f_8\right] , \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Lin, L. & Wang, H. Generalized Stochastic Resonance for a Fractional Noisy Oscillator with Random Mass and Random Damping. J Stat Phys 178, 1201–1216 (2020). https://doi.org/10.1007/s10955-020-02494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02494-3

Keywords

Navigation