Skip to main content
Log in

Interacting Diffusions on Random Graphs with Diverging Average Degrees: Hydrodynamics and Large Deviations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider systems of mean-field interacting diffusions, where the pairwise interaction structure is described by a sparse (and potentially inhomogeneous) random graph. Examples include the stochastic Kuramoto model with pairwise interactions given by an Erdős–Rényi graph. Our problem is to compare the bulk behavior of such systems with that of corresponding systems with dense nonrandom interactions. For a broad class of interaction functions, we find the optimal sparsity condition that implies that the two systems have the same hydrodynamic limit, which is given by a McKean–Vlasov diffusion. Moreover, we also prove matching behavior of the two systems at the level of large deviations. Our results extend classical results of dai Pra and den Hollander and provide the first examples of LDPs for systems with sparse random interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., PérezVicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Bollobas, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. OUP Oxford, Oxford (2013)

    Book  MATH  Google Scholar 

  4. Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40(1), 74–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabana, T., Touboul, J.: Large deviations, dynamics and phase transitions in large stochastic and disordered neural networks. J. Stat. Phys. 153(2), 211–269 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cabana, T., Touboul, J.: Large deviations for randomly connected neural networks: II. State-dependent interactions. Adv. Appl. Probab. 50(3), 983 (2018)

    Article  MathSciNet  Google Scholar 

  7. Cabana, T., Touboul, J.: Large deviations for randomly connected neural networks: I. Spatially extended systems. Adv. Appl. Probab. 50(3), 944 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chiba, H., Medvedev, G.S.: The mean field analysis for the Kuramoto model on graphs I. The mean field equation and transition point formulas. ArXiv e-prints (2016)

  9. Chiba, H., Medvedev, G.S., Mizuhara, M.S.: Bifurcations in the kuramoto model on graphs. Chaos 28(7), 073109 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Coppini, F., Dietert, H., Giacomin, G.: a law of large numbers and large deviations for interacting diffusions on Erdős-Rényi graphs. ArXiv e-prints (2018)

  11. Cumin, D., Unsworth, C.P.: Generalising the kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226(2), 181–196 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Delattre, S., Giacomin, G., Luçon, E.: A note on dynamical models on random graphs and Fokker-Planck equations. J. Stat. Phys. 165(4), 785–798 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability. Springer, Berlin Heidelberg (2009)

    MATH  Google Scholar 

  14. Feng, J., Kurtz, T.G.: Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2006)

    Book  Google Scholar 

  15. Graham, C.: Nonlinear diffusion with jumps. Ann. de l’I.H.P. Probab. et Stat. 28(3), 393–402 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Guédon, O., Vershynin, R.: Community detection in sparse networks via Grothendieck’s inequality. Probab. Theory Relat. Fields 165(3), 1025–1049 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer Series in Synergetics. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  18. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory, Ser. B 96(6), 933–957 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luçon, E.: Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16, 792–829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luçon, E.: Quenched large deviations for interacting diffusions in random media. J. Stat. Phys. 166(6), 1405–1440 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Luçon, E., Stannat, W.: Mean field limit for disordered diffusions with singular interactions. Ann. Appl. Probab. 24(5), 1946–1993 (2014). 10

    Article  MathSciNet  MATH  Google Scholar 

  22. Luçon, E., Stannat, W.: Transition from gaussian to non-gaussian fluctuations for mean-field diffusions in spatial interaction. Ann. Appl. Probab. 26(6), 3840–3909 (2016). 12

    Article  MathSciNet  MATH  Google Scholar 

  23. Medvedev, G.S.: The continuum limit of the Kuramoto model on sparse directed graphs. ArXiv e-prints (2018)

  24. Oliveira, R.I., Reis, G.H., Stolerman, L.M.: Interacting diffusions on sparse graphs: hydrodynamics from local weak limits. arXiv e-prints, page arXiv:1812.11924 (2018)

  25. Pra, P.D., den Hollander, F.: McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84(3), 735–772 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Eté de Probabilités de Saint-Flour XIX, 1989–1991. Springer (1991)

Download references

Acknowledgements

R. I. Oliveira: Supported by a Bolsa de Produtividade em Pesquisa from CNPq, Brazil. His work in this article is part of the activities of FAPESP Center for Neuromathematics (grant # 2013/07699-0, FAPESP - S. Paulo Research Foundation). G. H. Reis: Supported by a Ph.D. scholarship from CNPq, Brazil (grant # 140768/2015-7.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto I. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: An Approximation Result

In this subsection we prove the existence of a good approximation as in Lemma 4.

Lemma 8

Let \(\phi :\mathbb {R}^3\rightarrow \mathbb {R}\) differentiable. Suppose that there is a constant \(M \in \mathbb {R}\) such that \(\left\| \phi \right\| _{\infty }\le M\) and \(\left\| \nabla \phi \right\| _{op,\infty }\le M\). Let \(N_3 \in \mathbb {R}^3\) be a normal random variable with mean zero and covariance matrix identity \(Id_{3\times 3}\). For any \(\varepsilon \in (0,1]\) and for each \(\mathbf {x} \in \mathbb {R}^3\) define \(\phi _\varepsilon (\mathbf {x})=\mathbb {E}\left[ \phi (\mathbf {x}+\varepsilon N_3)\right] .\) Then

  1. 1.

    \(\phi _{\varepsilon } \in C^\infty (\mathbb {R}^3).\)

  2. 2.

    \(\left\| \phi _\varepsilon \right\| _{\infty }\le \left\| \phi \right\| _{\infty }.\)

  3. 3.

    \(\left\| \phi -\phi _\varepsilon \right\| _{\infty }\le \varepsilon \left\| \nabla \phi \right\| _{op,\infty }\mathbb {E}\left[ |N_3|\right] .\)

  4. 4.

    \(\left\| \nabla \phi _\varepsilon \right\| _{op,\infty }\le \left\| \nabla \phi \right\| _{op,\infty }.\)

Proof

Let \(\gamma \) be the density of \(N_3\) with respect to the Lebesgue measure. By definition

$$\begin{aligned} \phi _\varepsilon (\mathbf {x})= & {} \int _{\mathbb {R}^3}\phi (\mathbf {x}+\varepsilon \mathbf {y})\gamma (\mathbf {y})d\mathbf {y} \\= & {} \int _{\mathbb {R}^3}\phi (\mathbf {z})\gamma \left( \dfrac{\mathbf {z}-\mathbf {x}}{\varepsilon ^3}\right) d\mathbf {y}. \end{aligned}$$

Therefore, applying the Convergence Dominated Theorem we can show that

$$\begin{aligned} \dfrac{\partial \phi _\varepsilon }{\partial x_i}(\mathbf {x})= & {} \int _{\mathbb {R}^3}\phi (\mathbf {z})\dfrac{\partial \gamma }{\partial x_i}\left( \dfrac{\mathbf {z}-\mathbf {x}}{\varepsilon ^3}\right) d\mathbf {y} \end{aligned}$$

and the same is true for all higher derivatives. Therefore, \(\gamma \in C^{\infty }(\mathbb {R}^3)\) implies \(\phi _\varepsilon \in C^{\infty }(\mathbb {R}^3).\)

Again by the Convergence Dominated Theorem, using that \(\phi \) has one derivative

$$\begin{aligned} \dfrac{\partial \phi _\varepsilon }{\partial x_i}(\mathbf {x})= & {} \int _{\mathbb {R}^3}\dfrac{\partial \phi }{\partial x_i}(\mathbf {x}+\varepsilon \mathbf {y})\gamma (\mathbf {y})d\mathbf {y}. \end{aligned}$$

This implies that \(\left\| \nabla \phi _\varepsilon \right\| _{op,\infty }\le \left\| \nabla \phi \right\| _{op,\infty }\). For the third claim we write

$$\begin{aligned} \phi _\varepsilon (x)-\phi (x)=\mathbb {E}\left[ \phi (x+\varepsilon N)-\phi (x)\right] \end{aligned}$$

to see that the Mean Value Theorem implies \(\left\| \phi _\varepsilon -\phi \right\| _{\infty }\le \varepsilon \left\| \nabla \phi \right\| _{op,\infty }\mathbb {E}\left[ |N|\right] .\)\(\square \)

The next Lemma implies Lemma 8 in the main text. We will need a bump function \(\xi \), that is, a \(C^{\infty }\) function such that

  • \(\left\| \xi \right\| _{\infty }\le 1\).

  • \(\left\| \xi '\right\| _{\infty }\le C_1\) (a constant that does not depend in any parameter).

  • \(\xi \equiv 1\) in \([-1,1]\).

  • \(\xi \equiv 0\) in \([-2,2]^c\).

Lemma 9

Consider \(\phi \) and \(\phi _\varepsilon \) as in Lemma 8. Define also for all \(R\ge 1\) and \(\mathbf {x} \in \mathbb {R}^3\)

$$\begin{aligned} \phi _{\varepsilon ,R}(\mathbf {x})=\phi _\varepsilon (\mathbf {x})\xi \left( \dfrac{\left\| \mathbf {x}\right\| _{2}^2}{R^2}\right) . \end{aligned}$$

Then

  1. 1.

    \(\phi _{\varepsilon ,R} \in C^\infty (\mathbb {R}^3).\)

  2. 2.

    supp.\(\phi _{\varepsilon ,R} \subset B_{2R}(\mathbf {0}).\)

  3. 3.

    \(\left\| \phi _{\varepsilon ,R}\right\| _{\infty }\le \left\| \phi \right\| _{\infty }.\)

  4. 4.

    \(\left\| \nabla \phi _{\varepsilon ,R}\right\| _{op,\infty }\le \left\| \nabla \phi \right\| _{op,\infty }+\left\| \xi '\right\| _{\infty }\left\| \phi \right\| _{\infty }.\)

  5. 5.

    \(\left\| \phi _{\varepsilon ,R}-\phi \right\| _{L^{\infty }(B_{R}(\mathbf {0}))}\le \varepsilon \left\| \nabla \phi \right\| _{op,\infty }\mathbb {E}\left[ |N_3|\right] .\)

In this way we choose

$$\begin{aligned} M=\max \{\left\| \phi \right\| _{\infty },\left\| \nabla \phi \right\| _{op,\infty }+\left\| \xi '\right\| _{\infty }\left\| \phi \right\| _{\infty },\left\| \nabla \phi \right\| _{op,\infty }\mathbb {E}\left[ |N_3|\right] \} \end{aligned}$$

and write \(\phi ^{\epsilon ,R}:=\phi _{\epsilon /M,R}\) to state Lemma 4.

Proof

Items 1–3 are immediate from the definition of \(\xi \) and \(\phi _\varepsilon .\) To check item 4 we apply the product rule to obtain

$$\begin{aligned} \dfrac{\partial \phi _{\varepsilon ,R}}{\partial x_i}(x)=\dfrac{\partial \phi _\varepsilon }{\partial x_i}(x)\xi \left( \dfrac{x}{R}\right) +\phi _\varepsilon (x)\xi '\left( \dfrac{\left\| \mathbf {x}\right\| _{2}^2}{R^2}\right) \dfrac{2x_i}{R^2}. \end{aligned}$$

For the first term on the right hand side remember that \(\xi \le 1\) and \(\left\| \nabla \phi _\varepsilon \right\| _{op,\infty }\le \left\| \nabla \phi \right\| _{op,\infty } \). The second term vanishes when \(\left\| \mathbf {x}\right\| _{2}\ge R\) since supp.\(\xi \subset [-1,1]\). In the case \(\left\| \mathbf {x}\right\| _{2}< R\) we have that

$$\begin{aligned} \left| \dfrac{2x_i}{R^2}\right| \le 1. \end{aligned}$$

To finish item 4 remember that \(\left\| \mathbf {x}\right\| _{2}\le \left\| \mathbf {x}\right\| _{1}\) in such way that we just need to sum the last bounds.

To check item 5 we just need to note that \(\phi _{\varepsilon ,R}=\phi _\varepsilon \) in \(B_R(\mathbf {0})\) and use item 3 of Lemma 8. \(\square \)

Appendix: Extension of the “Dense” LDP

In this Appendix we check that the same large deviations result and McKean–Vlasov limit obtained by dai Pra and den Hollander [25] holds in our slightly more general setting. More specifically, we wish to sketch a proof of the following result.

Theorem 3

Consider the sequence of empirical measures \(\{\overline{L}_n\}_{n\in \mathbb {N}}\) under Assumptions 12 and 3. Then \(\{\overline{L}_n\}_{n\in \mathbb {N}}\) satisfies a Large Deviations Principle with the rate function I in Definition 3, which has a unique McKean–Vlasov diffusion as minimizer.

We review the points we discussed in Remark 2. The trajectories in \(\overline{\theta }^{(n)}\) evolve according to the Hamiltonian

$$\begin{aligned} \overline{H}_n(x^{(n)},\omega ^{(n)}):= \frac{1}{2n}\sum _{i,j=1}^n\,\overline{f}(x^{(n)}_i-x^{(n)}_j,\omega _i^{(n)},\omega _j^{(n)}) + \sum _{i=1}^n\,g(x^{(n)}_i,\omega _i^{(n)}). \end{aligned}$$

This is the same kind of Hamiltonian in Reference [25], except that f is replaced by \(\overline{f}\).

Our assumptions on the measures \(\mu \) and \(\lambda \) are the same as in Reference [25]. The assumptions on \(\overline{f}\) and g are nearly the same as in Reference [25], but we only assume \(\overline{f}',\overline{f}'',g',g''\) are bounded Lipschitz, whereas Reference [25] also requires that \(\overline{f},g\) be bounded.

We now explain how to adapt the proofs of Lemma 1, Theorem 1 and Theorem 2 in Reference [25] to our slightly weaker assumption. One important point is that \(\overline{f}=\overline{f}(x,\omega ,\pi )\) and \(g=g(x,\omega )\) are L-Lipschitz in the first variable, with a constant \(L>0\) that does not depend on \(\omega \) or \(\pi \). In particular, Lemma 1 in their paper, which describes the law of \(\overline{L}_n\) as an exponential tilt, works exactly the same way as in their paper, via Girsanov’s Theorem and Itô’s Formula.

$$\begin{aligned} P_N(\cdot )=\int d(W^{\otimes N}\otimes \mu ^{\otimes N})\exp \left( NF(L_N) \right) \mathbb {I}_{\{L_N \in \cdot \}} \end{aligned}$$
(54)

Theorem 1 uses the exponential tilting argument to derive a LDP for \(\overline{L}_n\). This requires a slight amount of care, as the tilting functional F is unbounded in our setting. However, the fact that fg are Lipschitz implies:

$$\begin{aligned} |F(L_N)|\le K\,\left( 1+\int \,|x_T-x_0|\,L_N(dx_{[0,T]}d\omega )\right) \end{aligned}$$

for some constant \(K>0\). Thus the exponential integrability conditions in Varadhan’s Lemma (cf. [13, Theorem 4.3.1]) apply and allow us to conclude the proof.

For Theorem 2, the main body of the proof follows in the same way from Itô’s Formula. The only change is in the argument for uniqueness in Appendix A. More specifically, what we need to do (in their notation) is show that the density of \(Q_*\) at time t conditionally on \(\omega \) satisfies a bound:

$$\begin{aligned} q_t^{\omega }(z)\le B_T\,t^{-\alpha } \end{aligned}$$

with \(0\le \alpha <1/2\) and B independent of \(\omega \) (but may depend on T).

To obtain this, the [25] uses the boundedness of f and g when they claim that the drift \(\beta _t^{\omega ,\varPi _tQ_*}\) is the bounded derivative of a bounded function. In our case the drift is a bounded derivative of a Lipschitz function. Therefore, for any event \(E\subset C([0,T],\mathbb {R})\times \mathbb {R}\),

$$\begin{aligned} Q_*(E) = \int _{A}\,Z_T\,W_\lambda \otimes \mu (dx_{[0,T]}d\omega ) \end{aligned}$$

where \(|\log Z_T|\le K\,(1+|x(T)-x(0)|)\) and \(W_\lambda \) is the law of Brownian motion started from measure \(\lambda \). Now if E takes the form:

$$\begin{aligned} E:= \{(x_{[0,T]},\omega )\,:\, x(T)\in A,\omega \in B\}, \end{aligned}$$

then:

$$\begin{aligned} Q_*(E) \le \left( \int _{\mathbb {R}^2} e^{K\,(1+|x|)}\,\mathbb {I}_{A}(x+y)\rho _{t}(x)\phi (y)\,dx\,dy\right) \times \mu (B), \end{aligned}$$

where \(\rho _{t}\) is the density of a N(0, t) random variable and \(\phi \) is the density of the initial measure \(\lambda \). Using the notation of their paper, we obtain:

$$\begin{aligned} q_t^{\omega }(z)\le \int _\mathbb {R}\,e^{K\,(1+|z-y|)}\,\phi (y)\,\rho _t(z-y)\,dy. \end{aligned}$$

We may apply Hölder’s inequality as in their proof to obtain:

$$\begin{aligned} q_t^{\omega }(z)\le \Vert \phi \Vert _{L^p}\,\left( \int _\mathbb {R}\,e^{K\,q(1+|z-y|)}\,\rho _t(z-y)^q\,dy\right) ^{\frac{1}{q}}\le B\,t^{(1/2 -q/2)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R.I., Reis, G.H. Interacting Diffusions on Random Graphs with Diverging Average Degrees: Hydrodynamics and Large Deviations. J Stat Phys 176, 1057–1087 (2019). https://doi.org/10.1007/s10955-019-02332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02332-1

Keywords

Navigation