Skip to main content
Log in

Lévy Walk with Multiple Internal States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Lévy walk with multiple internal states can effectively model the motion of particles that don’t immediately move back to the directions or areas which they come from. When the Lévy walk behaves superdiffusion, it is discovered that the non-immediately-repeating property, characterized by the constructed transition matrix, has no influence on the particle’s mean square displacement (MSD) or Pearson coefficient. This is a kind of stable property of Lévy walk. However, if the Lévy walk shows the dynamical behaviors of normal diffusion, then the effect of non-immediately-repeating emerges. For the Lévy walk with some particular transition matrices, it may display nonsymmetric dynamics; in these cases, the behaviors of their variances are detailedly discussed, especially some comparisons with the ones of the continuous time random walks are made (a striking difference is the changes of the exponents of the variances). The first passage time distribution and its average of Lévy walks are simulated, the results of which turn out that the first passage time can distinguish Lévy walks with different transition matrices, while the MSD can not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benjacob, E., Bergman, D.J., Matkowsky, B.J., Schuss, Z.: Lifetime of oscillatory steady states. Phys. Rev. A 26, 2805 (1982)

    Article  ADS  Google Scholar 

  2. Bobrovsky, B.Z., Schuss, Z.: A singular perturbation method for the computation of the mean first passage time in a nonlinear filter. SIAM J. Appl. Math. 42, 174–187 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Carmeli, B., Nitzan, A.: Theory of activated rate processes: bridging between the Kramers limits. Phys. Rev. Lett. 51, 233 (1983)

    Article  ADS  Google Scholar 

  4. Day, M.V.: Large deviations results for the exit problem with characteristic boundary. J. Math. Anal. Appl. 174, 134–153 (1990)

    Article  MathSciNet  Google Scholar 

  5. Deng, W.H., Wu, X.C., Wang, W.L.: Mean exit time and escape probability for the anomalous processes with the tempered power-law waiting times. EPL 117, 10009 (2017)

    Article  ADS  Google Scholar 

  6. Duan, J.Q.: An Introduction to Stochastic Dynamics. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  7. Dybiec, B., Gudowska-Nowak, E., Barkai, E., Dubkov, A.A.: Lévy flights versus Lévy walks in bounded domains. Phys. Rev. E 95, 052102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Feller, W.: An Introduction Probability Theory and its Application, vol. 1. Wiley, New York (1968)

    MATH  Google Scholar 

  9. Gao, T., Duan, J., Li, X., Song, R.: Mean exit time and escape probability for dynamical systems driven by Lévy noises. SIAM J. Sci. Comput. 36, A887–A906 (2014)

    Article  Google Scholar 

  10. Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)

    Article  ADS  Google Scholar 

  11. Klafter, J., Sokolov, I.M.: First Steps in Random Walks: From Tools to Applications. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  12. Klafter, J., Zumofen, G.: Lévy statistics in a Hamiltonian system. Phys. Rev. E 49, 4873 (1994)

    Article  ADS  Google Scholar 

  13. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1982)

    MATH  Google Scholar 

  14. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Niemann, M., Barkai, E., Kantz, H.: Renewal theory for a system with internal states. Math. Model. Nat. Phenom. 11, 191–239 (2016)

    Article  MathSciNet  Google Scholar 

  16. Scalas, E.: Five years of continuous-time random walks in econophysics. In: The Complex Networks of Economic Interactions, pp. 3–16. Springer, Berlin, (2006)

  17. Shlesinger, M.F., Klafter, J., Wong, Y.M.: Random walks with infinite spatial and temporal moments. J. Stat. Phys. 27, 499–512 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. Xu, P.B., Deng, W.H.: Fractional compound Poisson processes with multiple internal states. Math. Model. Nat. Phenom. 13, 10 (2018)

    Article  MathSciNet  Google Scholar 

  19. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87, 483 (2015)

    Article  ADS  Google Scholar 

  20. Zaburdaev, V., Fouxon, I., Denisov, S., Barkai, E.: Superdiffusive dispersals impart the geometry of underlying random walks. Phys. Rev. Lett. 117, 270601 (2016)

    Article  Google Scholar 

  21. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zumofen, G., Klafter, J.: Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant No. 11671182, and the Fundamental Research Funds for the Central Universities under Grants No. lzujbky-2018-it60, No. lzujbky-2018-ot03, and No. lzujbky-2017-ot10.

A Calculations of \(\big <x(t)\big>\), \(\big <x^2(t)\big>\) and \(Var\big (x(t)\big )\) of Subdiffusion with Multiple Internal States and \(M_6\) Transition Matrix

A Calculations of \(\big <x(t)\big>\), \(\big <x^2(t)\big>\) and \(Var\big (x(t)\big )\) of Subdiffusion with Multiple Internal States and \(M_6\) Transition Matrix

From [18], we have

$$\begin{aligned} \big |P(\mathbf {k},s)\big>=\frac{{I}-{\varPhi }(s)}{s}\big [I-M^T H(\mathbf {k},s)\big ]\big |\mathrm{init}\big >, \end{aligned}$$
(23)

where \(H(\mathbf {x},t)=\varLambda (\mathbf {x})\varPhi (t)\) and \(\varLambda (\mathbf {x})\), \(\varPhi (t)\) are matrices of jump length and waiting time, respectively. In this section, we still consider the same internal states shown in the third section. Thus if we let the jump length distribution matrix as

$$\begin{aligned} \varLambda (x,y)=\mathrm{diag}\big (\gamma ^{+}(x)\gamma ^{+}(y), \gamma ^{+}(x)\gamma ^{-}(y), \gamma ^{-}(x)\gamma ^{+}(y), \gamma ^{-}(x)\gamma ^{-}(y)\big ), \end{aligned}$$

where \( \gamma ^{+}(l)={\left\{ \begin{array}{ll} \sqrt{\frac{2}{\pi \sigma ^2}}\exp \left( -\frac{l^2}{2\sigma ^2}\right) &{} {l\geqslant 0}\\ 0 &{} {l<0} \end{array}\right. }, \) \( \gamma ^{-}(l)={\left\{ \begin{array}{ll} 0 &{} {l\geqslant 0}\\ \sqrt{\frac{2}{\pi \sigma ^2}}\exp \left( -\frac{l^2}{2\sigma ^2}\right) &{} {l<0} \end{array}\right. }. \) And the Fourier transform of \(\varLambda (x,y)\) w.r.t. x and y is

$$\begin{aligned} \begin{aligned}&{\varLambda }(k_x,k_y)\\&=\mathrm{diag}\left( \exp \left( -\frac{k_x^2+k_y^2}{2}\right) \left( 1+\sqrt{\frac{2}{\pi }}i k_x\right) \left( 1+\sqrt{\frac{2}{\pi }}i k_y\right) ,\right. \\&~~~~~~~~~~~~~~~\exp \left( -\frac{k_x^2+k_y^2}{2}\right) \left( 1+\sqrt{\frac{2}{\pi }}i k_x\right) \left( 1-\sqrt{\frac{2}{\pi }}i k_y\right) ,\\&~~~~~~~~~~~~~~~\exp \left( -\frac{k_x^2+k_y^2}{2}\right) \left( 1-\sqrt{\frac{2}{\pi }}i k_x\right) \left( 1+\sqrt{\frac{2}{\pi }}i k_y\right) ,\\&~~~~~~~~~~~~~~~\left. \exp \left( -\frac{k_x^2+k_y^2}{2}\right) \left( 1-\sqrt{\frac{2}{\pi }}i k_x\right) \left( 1-\sqrt{\frac{2}{\pi }}i k_y\right) \right) . \end{aligned} \end{aligned}$$
(24)

And the matrix of distribution of waiting time asymptotically behaves as \(\varPhi (s)\sim (1-s^\gamma )I\) in the Laplace space, where \(0<\gamma <1\). By utilizing Eqs. (23) and (24) and \(\varPhi (s)\), one can get the corresponding \(\big <x(t)\big>\) and \(\big <x^2(t)\big>\) with the same method in Sect. 3. That is

$$\begin{aligned} \big <x(t)\big >\sim \frac{2}{19}\sqrt{\frac{2}{\pi }}\frac{1}{\varGamma (1+\gamma )}t^\gamma , \end{aligned}$$

and

$$\begin{aligned} \big <x^2(t)\big >\sim \frac{16}{361\pi }\frac{1}{\varGamma (1+2\gamma )}t^{2\gamma }. \end{aligned}$$

Thus we obtain the variance

$$\begin{aligned} \mathrm{Var}\big (x(t)\big )\sim \frac{8}{361\pi }\left[ \frac{2}{\varGamma (1+2\gamma )}-\frac{1}{\varGamma (1+\gamma )^2}\right] t^{2\gamma }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Deng, W. Lévy Walk with Multiple Internal States. J Stat Phys 173, 1598–1613 (2018). https://doi.org/10.1007/s10955-018-2152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2152-4

Keywords

Navigation