Skip to main content
Log in

Stochastic Averaging Principle for Spatial Birth-and-Death Evolutions in the Continuum

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a spatial birth-and-death process on the phase space of locally finite configurations \({\varGamma }^+ \times {\varGamma }^-\) over \({\mathbb {R}}^d\). Dynamics is described by an non-equilibrium evolution of states obtained from the Fokker-Planck equation and associated with the Markov operator \(L^+(\gamma ^-) + \frac{1}{\varepsilon }L^-\), \(\varepsilon > 0\). Here \(L^-\) describes the environment process on \({\varGamma }^-\) and \(L^+(\gamma ^-)\) describes the system process on \({\varGamma }^+\), where \(\gamma ^-\) indicates that the corresponding birth-and-death rates depend on another locally finite configuration \(\gamma ^- \in {\varGamma }^-\). We prove that, for a certain class of birth-and-death rates, the corresponding Fokker-Planck equation is well-posed, i.e. there exists a unique evolution of states \(\mu _t^{\varepsilon }\) on \({\varGamma }^+ \times {\varGamma }^-\). Moreover, we give a sufficient condition such that the environment is ergodic with exponential rate. Let \(\mu _{\mathrm {inv}}\) be the invariant measure for the environment process on \({\varGamma }^-\). In the main part of this work we establish the stochastic averaging principle, i.e. we prove that the marginal of \(\mu _t^{\varepsilon }\) onto \({\varGamma }^+\) converges weakly to an evolution of states on \({\varGamma }^+\) associated with the averaged Markov birth-and-death operator \({\overline{L}} = \int _{{\varGamma }^-}L^+(\gamma ^-)d \mu _{\mathrm {inv}}(\gamma ^-)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arendt, W., Rhandi, A.: Perturbation of positive semigroups. Arch. Math. (Basel) 56(2), 107–119 (1991). https://doi.org/10.1007/BF01200341

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolker, B., Cornell, S., Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Ovaskainen, O.: A general mathematical framework for the analysis of spatio-temporal point processes. Theor. Ecol. 7(1), 101–113 (2014)

    Article  Google Scholar 

  3. Eibeck, A., Wagner, W.: Stochastic interacting particle systems and nonlinear kinetic equations. Ann. Appl. Probab. 13(3), 845–889 (2003). https://doi.org/10.1214/aoap/1060202829

    Article  MathSciNet  MATH  Google Scholar 

  4. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986). https://doi.org/10.1002/9780470316658

    Book  MATH  Google Scholar 

  5. Finkelshtein, D.: Functional evolutions for homogeneous stationary death-immigration spatial dynamics. Methods Funct. Anal. Topol. 17(4), 300–318 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Finkelshtein, D.: Measures on two-component configuration spaces. Methods Funct. Anal. Topol 17(4), 300–318 (2011)

    MathSciNet  Google Scholar 

  7. Finkelshtein, D., Kondratiev, Y., Oliveira, M.J.: Markov evolutions and hierarchical equations in the continuum. I. One-component systems. J. Evol. Equ. 9(2), 197–233 (2009). https://doi.org/10.1007/s00028-009-0007-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Zhizhina, E.: An approximative approach for construction of the Glauber dynamics in continuum. Math. Nachr. 285(2–3), 223–235 (2012). https://doi.org/10.1002/mana.200910248

    Article  MathSciNet  MATH  Google Scholar 

  9. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262(3), 1274–1308 (2012). https://doi.org/10.1016/j.jfa.2011.11.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Zhizhina, E.: On an aggregation in birth-and-death stochastic dynamics. Nonlinearity 27(6), 1105–1133 (2014). https://doi.org/10.1088/0951-7715/27/6/1105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Oliveira, M.J.: Dynamical Widom-Rowlinson model and its mesoscopic limit. J. Stat. Phys. 158(1), 57–86 (2015). https://doi.org/10.1007/s10955-014-1124-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Finkelshtein, D., Friesen, M., Hatzikirou, H., Kondratiev, Y., Krüger, T., Kutoviy, O.: Stochastic models of tumour development and related mesoscopic equations. Interdiscip. Stud. Complex Syst. 7, 5–85 (2015)

    Google Scholar 

  13. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Statistical dynamics of continuous systems: perturbative and approximative approaches. Arab. J. Math. 4(4), 255–300 (2015). https://doi.org/10.1007/s40065-014-0111-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004). https://doi.org/10.1214/105051604000000882

    Article  MathSciNet  MATH  Google Scholar 

  15. Friesen, M., Kondratiev, Y.: Weak-coupling limit for ergodic environments. https://bibos.math.uni-bielefeld.de/preprints/16-08-509.pdf (2016)

  16. Friesen, M.: Non-equilibrium dynamics for a Widom-Rowlinson type model with mutations. J. Stat. Phys. 166(2), 317–353 (2017). https://doi.org/10.1007/s10955-016-1699-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Friesen, M., Kutoviy, O.: Evolution of states and mesoscopic scaling for two-component birth-and-death dynamics in continuum. Methods Funct. Anal. Topol. 22(4), 346–374 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Garcia, N.L., Kurtz, T.G.: Spatial birth and death processes as solutions of stochastic equations. ALEA Lat. Am. J Probab. Math. Stat. 1, 281–303 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Kolokoltsov, V.N.: Kinetic equations for the pure jump models of \(k\)-nary interacting particle systems. Markov Process. Relat. Fields 12(1), 95–138 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Kondratiev, Y., Kozitsky, Y.: The evolution of states in a spatial population model. J. Dyn. Diff. Equ. 28(1), 1–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kondratiev, Y., Kuna, T.: Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 201–233 (2002). https://doi.org/10.1142/S0219025702000833

    Article  MathSciNet  MATH  Google Scholar 

  22. Kondratiev, Y., Kutoviy, O.: On the metrical properties of the configuration space. Math. Nachr. 279(7), 774–783 (2006). https://doi.org/10.1002/mana.200310392

    Article  MathSciNet  MATH  Google Scholar 

  23. Kondratiev, Y., Skorokhod, A.: On contact processes in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(2), 187–198 (2006). https://doi.org/10.1142/S0219025706002305

    Article  MathSciNet  MATH  Google Scholar 

  24. Kondratiev, Y., Kutoviy, O., Minlos, R.: On non-equilibrium stochastic dynamics for interacting particle systems in continuum. J. Funct. Anal. 255(1), 200–227 (2008). https://doi.org/10.1016/j.jfa.2007.12.006

    Article  MathSciNet  MATH  Google Scholar 

  25. Kondratiev, Y., Kutoviy, O., Pirogov, S.: Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11(2), 231–258 (2008). https://doi.org/10.1142/S0219025708003038

    Article  MathSciNet  MATH  Google Scholar 

  26. Kondratiev, Y., Kutoviy, O., Minlos, R.: Ergodicity of non-equilibrium Glauber dynamics in continuum. J. Funct. Anal. 258(9), 3097–3116 (2010). https://doi.org/10.1016/j.jfa.2009.09.005

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurtz, T.G.: Averaging for martingale problems and stochastic approximation. In: Applied Stochastic Analysis (New Brunswick, NJ, 1991). Lecture Notes in Control and Inform. Sci., vol. 177, pp. 186–209. Springer, Berlin (1992). https://doi.org/10.1007/BFb0007058

  28. Kurtz, T.G.: A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal. 12, 55–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lenard, A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Ration. Mech. Anal. 59(3), 241–256 (1975)

    Article  MathSciNet  Google Scholar 

  31. Lotz, H.P.: Uniform convergence of operators on \(L^\infty \) and similar spaces. Math. Z. 190(2), 207–220 (1985). https://doi.org/10.1007/BF01160459

    Article  MathSciNet  MATH  Google Scholar 

  32. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  33. Pinsky, M.A.: Lectures on Random Evolution. World Scientific Publishing Co., Inc, River Edge, NJ (1991). https://doi.org/10.1142/1328

    Book  MATH  Google Scholar 

  34. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2002). https://doi.org/10.1007/978-1-4471-3903-4

    Book  MATH  Google Scholar 

  35. Skorokhod, A., Hoppensteadt, F., Salehi, H.: Random Perturbation Methods with Applications in Science and Engineering. Springer, New York (2002)

    Book  MATH  Google Scholar 

  36. Spohn, H.: Kinetic equations from Hamiltonian dynamics: the Markovian approximations. In: Kinetic Theory and Gas Dynamics. CISM Courses and Lectures, vol. 293, pp. 183–211. Springer, Vienna (1988). https://doi.org/10.1007/978-3-7091-2762-9_6

  37. Steinsaltz, D., Evans, S.N., Wachter, K.W.: A generalized model of mutation-selection balance with applications to aging. Adv. Appl. Math. 35(1), 16–33 (2005). https://doi.org/10.1016/j.aam.2004.09.003

    Article  MathSciNet  MATH  Google Scholar 

  38. Thieme, H.R., Voigt, J.: Stochastic semigroups: their construction by perturbation and approximation. In: Positivity IV—Theory and Applications, pp. 135–146. Tech. Univ. Dresden, Dresden (2006)

  39. Wu, L., Zhang, Y.: A new topological approach to the \(L^\infty \)-uniqueness of operators and the \(L^1\)-uniqueness of Fokker-Planck equations. J. Funct. Anal. 241(2), 557–610 (2006). https://doi.org/10.1016/j.jfa.2006.04.020

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support through CRC701, project A5, at Bielefeld University is gratefully acknowledged. The authors would like to thank the anonymous referee for his remarks which lead to a significant improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Friesen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friesen, M., Kondratiev, Y. Stochastic Averaging Principle for Spatial Birth-and-Death Evolutions in the Continuum. J Stat Phys 171, 842–877 (2018). https://doi.org/10.1007/s10955-018-2042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2042-9

Keywords

Navigation