Skip to main content
Log in

Subexponentially Growing Hilbert Space and Nonconcentrating Distributions in a Constrained Spin Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Motivated by recent experiments with two-component Bose–Einstein condensates, we study fully-connected spin models subject to an additional constraint. The constraint is responsible for the Hilbert space dimension to scale only linearly with the system size. We discuss the unconventional statistical physical and thermodynamic properties of such a system, in particular the absence of concentration of the underlying probability distributions. As a consequence, expectation values are less suitable to characterize such systems, and full distribution functions are required instead. Sharp signatures of phase transitions do not occur in such a setting, but transitions from singly peaked to doubly peaked distribution functions of an “order parameter” may be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boltzmann, L.: Vorlesungen über Gastheorie. Verlag J. A. Barth, Leipzig (1896)

    MATH  Google Scholar 

  2. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Charles Scribner’s Sons, New York (1902)

    MATH  Google Scholar 

  3. Dhar, D.: Entropy and phase transitions in partially ordered sets. J. Math. Phys. 19, 1711 (1978). https://doi.org/10.1063/1.523869

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Jensen, H.J., Pazuki, R.H., Pruessner, G., Tempesta, P.: Statistical mechanics of exploding phase spaces. arXiv:1609.02065

  5. Zibold, T., Nicklas, E., Gross, C., Oberthaler, M.K.: Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010). https://doi.org/10.1103/PhysRevLett.105.204101

    Article  ADS  Google Scholar 

  6. Gross, C., Zibold, T., Nicklas, E., Estève, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165 (2010). https://doi.org/10.1038/nature08919

    Article  ADS  Google Scholar 

  7. Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezzè, L., Smerzi, A., Oberthaler, M.K.: Fisher information and entanglement of non-Gaussian spin states. Science 345, 424 (2014). https://doi.org/10.1126/science.1250147

    Article  ADS  Google Scholar 

  8. Lipkin, H.J., Meshkov, N., Glick, A.J.: Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 62, 188 (1965). https://doi.org/10.1016/0029-5582(65)90862-X

    Article  MathSciNet  Google Scholar 

  9. Gilmore, R.: Critical properties of pseudospin Hamiltonians. J. Math. Phys. 25, 2336 (1984). https://doi.org/10.1063/1.526405

    Article  ADS  MathSciNet  Google Scholar 

  10. Cirac, J.I., Lewenstein, M., Mølmer, K., Zoller, P.: Quantum superposition states of Bose–Einstein condensates. Phys. Rev. A 57, 1208 (1998). https://doi.org/10.1103/PhysRevA.57.1208

    Article  ADS  Google Scholar 

  11. Vdovin, A.I., Storozhenko, A.N.: Effect of thermal ground state correlations on the statistical properties of the Lipkin model. Eur. Phys. J. A 5, 263 (1999). https://doi.org/10.1007/s100500050285

    Article  ADS  Google Scholar 

  12. Tsay Tzeng, S.Y., Ellis, P.J., Kuo, T.T.S., Osnes, E.: Finite-temperature many-body theory with the Lipkin model. Nucl. Phys. A 580, 277 (1994). https://doi.org/10.1016/0375-9474(94)90774-9

    Article  ADS  Google Scholar 

  13. Heiss, W.D., Scholtz, F.G., Geyer, H.B.: The large \({N}\) behaviour of the Lipkin model and exceptional points. J. Phys. A 38, 1843 (2005). https://doi.org/10.1088/0305-4470/38/9/002

    Article  ADS  MATH  Google Scholar 

  14. Barthel, T., Dusuel, S., Vidal, J.: Entanglement entropy beyond the free case. Phys. Rev. Lett. 97, 220402 (2006). https://doi.org/10.1103/PhysRevLett.97.220402

    Article  ADS  Google Scholar 

  15. Ribeiro, P., Vidal, J., Mosseri, R.: Thermodynamical limit of the Lipkin–Meshkov–Glick model. Phys. Rev. Lett. 99, 050402 (2007). https://doi.org/10.1103/PhysRevLett.99.050402

    Article  ADS  Google Scholar 

  16. Caneva, T., Fazio, R., Santoro, G.E.: Adiabatic quantum dynamics of the Lipkin–Meshkov–Glick model. Phys. Rev. B 78, 104426 (2008). https://doi.org/10.1103/PhysRevB.78.104426

    Article  ADS  Google Scholar 

  17. Scherer, D.D., Müller, C.A., Kastner, M.: Finite-temperature fidelity-metric approach to the Lipkin-Meshkov-Glick model. J. Phys. A 42, 465304 (2009). https://doi.org/10.1088/1751-8113/42/46/465304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kastner, M.: Nonequivalence of ensembles for long-range quantum spin systems in optical lattices. Phys. Rev. Lett. 104, 240403 (2010). https://doi.org/10.1103/PhysRevLett.104.240403

    Article  ADS  Google Scholar 

  19. Kastner, M.: Nonequivalence of ensembles in the Curie–Weiss anisotropic quantum Heisenberg model. J. Stat. Mech. 2010, P07006 (2010). https://doi.org/10.1088/1742-5468/2010/07/P07006

    Article  Google Scholar 

  20. Olivier, G., Kastner, M.: Microcanonical analysis of the Curie–Weiss anisotropic quantum Heisenberg model in a magnetic field. J. Stat. Phys. 157, 456 (2014). https://doi.org/10.1007/s10955-014-1093-9

    Article  ADS  MATH  Google Scholar 

  21. Campbell, S., De Chiara, G., Paternostro, M., Palma, G.M., Fazio, R.: Shortcut to adiabaticity in the Lipkin-Meshkov-Glick model. Phys. Rev. Lett. 114, 177206 (2015). https://doi.org/10.1103/PhysRevLett.114.177206

    Article  ADS  Google Scholar 

  22. Opatrný, T., Kolář, M., Das, K.K.: Spin squeezing by tensor twisting and Lipkin–Meshkov–Glick dynamics in a toroidal Bose–Einstein condensate with spatially modulated nonlinearity. Phys. Rev. A 91, 053612 (2015). https://doi.org/10.1103/PhysRevA.91.053612

    Article  ADS  Google Scholar 

  23. Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Measuring multipartite entanglement through dynamic susceptibilities. Nature Phys. 12, 778 (2016). https://doi.org/10.1038/nphys3700

    Article  ADS  Google Scholar 

  24. Santos, L.F., Távora, M., Pérez-Bernal, F.: Excited-state quantum phase transitions in many-body systems with infinite-range interaction: localization, dynamics, and bifurcation. Phys. Rev. A 94, 012113 (2016). https://doi.org/10.1103/PhysRevA.94.012113

    Article  ADS  Google Scholar 

  25. Scharf, G.: The Heisenberg model in the Weiss limit. Phys. Lett. A 38, 123 (1972). https://doi.org/10.1016/0375-9601(72)90517-8

    Article  ADS  Google Scholar 

  26. Caprio, M., Cejnar, P., Iachello, F.: Excited state quantum phase transitions in many-body systems. Ann. Phys. 323, 1106 (2008). https://doi.org/10.1016/j.aop.2007.06.011

    Article  ADS  MATH  Google Scholar 

  27. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. Springer, New York (1999)

    Book  MATH  Google Scholar 

  28. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.002

    Article  ADS  MathSciNet  Google Scholar 

  29. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  30. Sciolla, B., Biroli, G.: Dynamical transitions and quantum quenches in mean-field models. J. Stat. Mech. 2011, P11003 (2011). https://doi.org/10.1088/1742-5468/2011/11/P11003

    Article  MathSciNet  Google Scholar 

  31. Geva, E., Rosenman, E., Tannor, D.: On the second-order corrections to the quantum canonical equilibrium density matrix. J. Chem. Phys. 113, 1380 (2000). https://doi.org/10.1063/1.481928

    Article  ADS  Google Scholar 

  32. Gati, R., Oberthaler, M.K.: A bosonic Josephson junction. J. Phys. B 40, R61 (2007). https://doi.org/10.1088/0953-4075/40/10/R01

    Article  ADS  Google Scholar 

  33. Vaidya, V.D., Tiamsuphat, J., Rolston, S.L., Porto, J.V.: Degenerate Bose–Fermi mixtures of rubidium and ytterbium. Phys. Rev. A 92, 043604 (2015). https://doi.org/10.1103/PhysRevA.92.043604

    Article  ADS  Google Scholar 

  34. Lüschen, H.P., Bordia, P., Hodgman, S.S., Schreiber, M., Sarkar, S., Daley, A.J., Fischer, M.H., Altman, E., Bloch, I., Schneider, U.: Signatures of many-body localization in a controlled open quantum system. Phys. Rev. X 7, 011034 (2017). https://doi.org/10.1103/PhysRevX.7.011034

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with Markus Oberthaler and Hugo Touchette. J.R.W. acknowledges financial support through the internship programme of the National Institute for Theoretical Physics (South Africa). M.K. acknowledges financial support from the National Research Foundation of South Africa via the Competitive Programme for Rated Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kastner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, J.R., Kastner, M. Subexponentially Growing Hilbert Space and Nonconcentrating Distributions in a Constrained Spin Model. J Stat Phys 171, 449–461 (2018). https://doi.org/10.1007/s10955-018-2016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2016-y

Keywords

Navigation