Skip to main content
Log in

Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the ‘fluctuation-dissipation theorem’, the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the ‘fluctuation-dissipation theorem’ is satisfied, and this verifies that satisfying ‘fluctuation-dissipation theorem’ indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that we are putting quotes for the physical theorems as they are critical claims from physics compared with mathematical theorems that are rigorously justified.

References

  1. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  2. Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83(1), 34 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Decreusefond, L., Ustünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng, W., Barkai, E.: Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79(1), 011112 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Diethelm, K., Ford, N.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duncan, T.E., Hu, Y., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38(2), 582–612 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Felderhof, B.: On the derivation of the fluctuation-dissipation theorem. J. Phys. A 11(5), 921 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ford, G., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6(4), 504–515 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Freidlin, M.: Some remarks on the Smoluchowski-Kramers approximation. J. Stat. Phys. 117(3–4), 617–634 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. Springer, Wien (1997)

    MATH  Google Scholar 

  13. Hairer, M.: Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33, 703–758 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, M., Majda, A.J.: A simple framework to justify linear response theory. Nonlinearity 23(4), 909 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hairer, M., Pillai, N.S.: Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré B 47, 601–628 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jakšić, V., Pillet, C.: Ergodic properties of the non-Markovian Langevin equation. Lett. Math. Phys. 41(1), 49–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  18. Kou, S., Xie, X.S.: Generalized langevin equation with fractional gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93(18), 180603 (2004)

    Article  ADS  Google Scholar 

  19. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)

    Article  ADS  MATH  Google Scholar 

  21. Li, L., Liu, J.G.: A generalized definition of Caputo derivatives and its application to fractional ODEs. arXiv preprint arXiv:1612.05103v2 (2017)

  22. Magdziarz, M., Weron, A., Burnecki, K., Klafter, J.: Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Phys. Rev. Lett. 103(18), 180602 (2009)

    Article  ADS  Google Scholar 

  23. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. arXiv preprint arXiv:0704.0320 (2007)

  24. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Marconi, U., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461(4), 111–195 (2008)

    Article  ADS  Google Scholar 

  26. Marty, R., Sølna, K.: A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 2, 115–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51(2), 197–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mikosch, T., Norvaiša, R.: Stochastic integral equations without probability. Bernoulli 6, 401–434 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Min, W., Luo, G., Cherayil, B.J., Kou, S., Xie, X.S.: Observation of a power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 94(19), 198302 (2005)

    Article  ADS  Google Scholar 

  30. Mori, H.: A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 34(3), 399–416 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  31. Nualart, D.: Fractional Brownian motion: stochastic calculus and applications. Int. Congr. Math. 3, 1541–1562 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Proc. Appl. 102(1), 103–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110 (1928)

    Article  ADS  Google Scholar 

  34. Ottobre, M., Pavliotis, G.: Asymptotic analysis for the generalized Langevin equation. Nonlinearity 24(5), 1629 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Pavliotis, G.A.: Stochastic Processes and Applications, Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, New York (2014)

    MATH  Google Scholar 

  36. Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118(2), 251–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pipiras, V., Taqqu, M.: Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7(6), 873–897 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rey-Bellet, L., Thomas, L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225(2), 305–329 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. Theor. 81, 70–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Widder, D.: The Laplace Transform. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  41. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of J.-G Liu is partially supported by KI-Net NSF RNMS11-07444 and NSF DMS-1514826. The work of J. Lu is supported in part by National Science Foundation under Grant DMS-1454939. J. Lu would also like to thank Eric Vanden-Eijnden for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

We just consider a sample point \(x_0\) and a sample path G with G being continuous. We then construct a path that satisfies the integral equation given this sample initial data.

By Proposition 1, G(t) is continuous. Consider the sequence given by

$$\begin{aligned} x^{(0)}=x_0, \end{aligned}$$

and \(x^{(n)}, n\ge 1\) is given by

$$\begin{aligned} x^{(n)}(t)=x_0-\frac{1}{\varGamma (\alpha )}\int _0^t(t-s)^{\alpha -1} V'(x^{(n-1)}(s))\,ds+G(t). \end{aligned}$$

Assume L is a Lipschitz constant for \(V'(\cdot )\). Introducing \(g_{\gamma }=\frac{\theta (t)}{\varGamma (\gamma )}t^{\gamma -1}\), we find that \(\{g_{\gamma }\}_{\gamma >0}\) forms a convolution semigroup (Lemma 3). We define

$$\begin{aligned} e^n=x^{(n)}-x^{(n-1)}. \end{aligned}$$

Explicit formula tells us that

$$\begin{aligned} e^1=-V'(x_0)g_{\alpha +1}+G(t), \end{aligned}$$

and that

$$\begin{aligned} |e^n|=|-g_{\alpha }*(V'(x^{n-1})-V'(x^{n-2}))|\le L g_{\alpha }*|e^{n-1}|,\ \ n\ge 2. \end{aligned}$$

Hence,

$$\begin{aligned} |e^n|\le L^{n-1} g_{(n-1)\alpha }*|e^1|. \end{aligned}$$

Direct computation shows that \(\sup _{0\le t\le T}g_{(n-1)\alpha }*|e^1|\) decays exponentially in n. Hence, \(\sum _n |e^n|\) converges. It follows that \(\sum _n e^n\) converges uniformly on any interval [0, T] with \(T\in (0,\infty )\). The limit is also a continuous function. It turns out that the limit satisfies the integral equation.

For the uniqueness, assume that both x(t) and y(t) are solutions. Then, we take a sample where both x(t) and y(t) are continuous. For this sample, \(\forall t>0\),

$$\begin{aligned} |x(t)-y(t)|=\frac{1}{\varGamma (\alpha )}\left| \int _0^t(t-s)^{\alpha -1} (V'(x(s))-V'(y(s)))\right| ds\le L (g_{\alpha }*|x-y|)(t). \end{aligned}$$

Applying this inequality iteratively and using the semi-group property of \(g_{\gamma }\), we find

$$\begin{aligned} |x-y|(t)\le L^n g_{n\alpha }*|x-y|. \end{aligned}$$

Fixing \(T>0\), the right hand side goes to zero uniformly on [0, T]. Then, we find that \(x=y\) on [0, T] for this sample path. Since both solutions are continuous almost surely, then \(x=y\) on [0, T] almost surely. By the arbitrariness of T, \(x=y\) almost surely. The uniqueness then is shown. This then completes the proof of the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, JG. & Lu, J. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem. J Stat Phys 169, 316–339 (2017). https://doi.org/10.1007/s10955-017-1866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1866-z

Keywords

Navigation