Skip to main content
Log in

Structure and Randomness of Continuous-Time, Discrete-Event Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process’ intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (\(\epsilon \)-machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Lett. 63, 105–108 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104, 817–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Varn, D.P., Crutchfield, J.P.: Chaotic crystallography: how the physics of information reveals structural order in materials. Curr. Opin. Chem. Eng. 7, 47–56 (2015)

    Article  Google Scholar 

  5. Kelly, D., Dillingham, M., Hudson, A., Wiesner, K.: A new method for inferring hidden Markov models from noisy time sequences. PLoS ONE 7(1), e29703 (2012)

    Article  ADS  Google Scholar 

  6. Li, C.-B., Yang, H., Komatsuzaki, T.: Multiscale complex network of protein conformational fluctuations in single-molecule time series. Proc. Natl. Acad. Sci. USA 105, 536–541 (2008)

    Article  ADS  Google Scholar 

  7. Li, C.-B., Komatsuzaki, T.: Aggregated Markov model using time series of a single molecule dwell times with a minimum of excessive information. Phys. Rev. Lett. 111, 058301 (2013)

    Article  ADS  Google Scholar 

  8. Marzen, S., DeWeese, M.R., Crutchfield, J.P.: Time resolution dependence of information measures for spiking neurons: scaling and universality. Front. Comput. Neurosci. 9, 109 (2015)

    Article  Google Scholar 

  9. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  ADS  Google Scholar 

  10. Witt, A., Neiman, A., Kurths, J.: Characterizing the dynamics of stochastic bistable systems by measures of complexity. Phys. Rev. E 55, 5050–5059 (1997)

    Article  ADS  Google Scholar 

  11. Clarke, R.W., Freeman, M.P., Watkins, N.W.: Application of computational mechanics to the analysis of natural data: an example in geomagnetism. Phys. Rev. E 67, 016203 (2003)

    Article  ADS  Google Scholar 

  12. Dzugutov, M., Aurell, E., Vulpiani, A.: Universal relation between the Kolmogorov-Sinai entropy and the thermodynamical entropy in simple liquids. Phys. Rev. Lett. 81, 1762 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gonçalves, W.M., Pinto, R.D., Sartorelli, J.C., de Oliveira, M.J.: Inferring statistical complexity in the dripping faucet experiment. Physica A 257(1–4), 385–389 (1998)

    Article  ADS  Google Scholar 

  14. Jay Palmer, A., Fairall, C.W., Brewer, W.A.: Complexity in the atmosphere. IEEE Trans. Geosci. Remote Sens. 38, 2056–2063 (2000)

    Article  ADS  Google Scholar 

  15. Cerbus, R.T., Goldburg, W.I.: Information content of turbulence. Phys. Rev. E 88, 053012 (2013)

    Article  ADS  Google Scholar 

  16. Kolmogorov, A.N.: Foundations of the Theory of Probability, 2nd edn. Chelsea Publishing Company, New York (1956)

    MATH  Google Scholar 

  17. Chaitin, G.: On the length of programs for computing finite binary sequences. J. ACM 13, 145 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crutchfield, J.P.: Between order and chaos. Nat. Phys. 8(January), 17–24 (2012)

    Google Scholar 

  19. Akimoto, T., Hasumi, T., Aizawa, Y.: Characterization of intermittency in renewal processes: application to earthquakes. Phys. Rev. E 81, 031133 (2010)

    Article  ADS  Google Scholar 

  20. Darmon, D., Sylvester, J., Girvan, M., Rand, W.: Predictability of user behavior in social media: bottom-up versus top-down modeling. arXiv:1306.6111

  21. Yu, S.-Z.: Hidden semi-Markov models. Artif. Intell. 174(2), 215–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girardin, V.: On the different extensions of the ergodic theorem of information theory. In: Baeza-Yates, R., Glaz, J., Gzyl, H., Husler, J., Palacios, J.L. (eds.) Recent Advances in Applied Probability Theory, pp. 163–179. Springer, New York (2005)

    Chapter  Google Scholar 

  23. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)

    MATH  Google Scholar 

  24. Nair, C., Prabhakar, B., Shah, D.: On entropy for mixtures of discrete and continuous variables (2006). arXiv:cs/0607075

  25. Marzen, S., Crutchfield, J.P.: Informational and causal architecture of continuous-time renewal processes. J. Stat. Phys. 168(1), 109–127 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Brookshear, J.G.: Theory of Computation: Formal Languages, Automata, and Complexity. Benjamin/Cummings, Redwood City (1989)

    MATH  Google Scholar 

  27. Victor, J.D.: Binless strategies for estimation of information from neural data. Phys. Rev. E 66(5), 051903 (2002)

    Article  ADS  Google Scholar 

  28. Johnson, B.D., Crutchfield, J.P., Ellison, C.J., McTague, C.S.: Enumerating finitary processes. arXiv:1011.0036

  29. Strelioff, C.C., Crutchfield, J.P., Hübler, Alfred: Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling. Phys. Rev. E 76(1), 011106 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Elliot, T.J., Gu, M.: Occam’s Vorpal Quantum Razor: Memory Reduction when Simulating Continuous-time Stochastic Processes with Quantum Devices (2017). arXiv:1704.04231

Download references

Acknowledgements

The authors thank Santa Fe Institute for its hospitality during visits, A. Boyd, C. Hillar, and D. Upper for useful discussions, and T. Elliott for the example of Fig. 2. JPC is an SFI External Faculty member. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U. S. Army Research Office under Contracts W911NF-13-1-0390 and W911NF-12-1-0288. S.E.M. was funded by a National Science Foundation Graduate Student Research Fellowship, a U.C. Berkeley Chancellor’s Fellowship, and the MIT Physics of Living Systems Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Crutchfield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzen, S.E., Crutchfield, J.P. Structure and Randomness of Continuous-Time, Discrete-Event Processes. J Stat Phys 169, 303–315 (2017). https://doi.org/10.1007/s10955-017-1859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1859-y

Keywords

Navigation