Skip to main content
Log in

Parametric Estimation from Approximate Data: Non-Gaussian Diffusions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the problem of parameters estimation in indirect observability contexts, where \(X_t \in R^r\) is an unobservable stationary process parametrized by a vector of unknown parameters and all observable data are generated by an approximating process \(Y^{\varepsilon }_t\) which is close to \(X_t\) in \(L^4\) norm.We construct consistent parameter estimators which are smooth functions of the sub-sampled empirical mean and empirical lagged covariance matrices computed from the observable data. We derive explicit optimal sub-sampling schemes specifying the best paired choices of sub-sampling time-step and number of observations. We show that these choices ensure that our parameter estimators reach optimized asymptotic \(L^2\)-convergence rates, which are constant multiples of the \(L^4\) norm \(|| Y^{\varepsilon }_t - X_t ||\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70, 223–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aït-Sahalia, Y., Mykland, P.A., Zhang, L.: How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18(2), 351–416 (2005)

    Article  MATH  Google Scholar 

  3. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73(6), 890–896 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azencott, R., Beri, A., Jain, A., Timofeyev, I.: Sub-sampling and parametric estimation for multiscale dynamics. Commun. Math. Sci. 11(4), 939–970 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azencott, R., Beri, A., Ren, P., Timofeyev, I.: Parametric estimation of the volatility equation in the Heston model using indirect observations. In Preparation (2015)

  6. Azencott, R., Beri, A., Timofeyev, I.: Adaptive sub-sampling for parametric estimation of Gaussian diffusions. J. Stat. Phys. 139(6), 1066–1089 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Azencott, R., Beri, A., Timofeyev, I.: Parametric estimation of stationary stochastic processes under indirect observability. J. Stat. Phys. 144(1), 150–170 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Azencott, R., Dacunha-Castelle, D.: Series of Irregular Observations: Forecasting and Model Building. Springer, New York (1986)

    Book  MATH  Google Scholar 

  9. Azencott, R., Gadhyan, Y.: Accuracy of maximum likelihood parameter estimators for Heston stochastic volatility sde. J. Stat. Phys. 159(2), 393–420 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bandi, F.M., Phillips, P.C.B.: Fully nonparametric estimation of scalar diffusion models. Econometrica 71(1), 241–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barndorff-Nielson, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica 76(6), 1481–1536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barndorff-Nielson, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. 64, 253–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barndorff-Nielson, O.E., Shephard, N.: Power and bipower variation with stochastic volatility and jumps. J. Financ. Economet. 2(1), 1–37 (2004)

    Article  Google Scholar 

  14. Berner, J.: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker-Planck equation. J. Atmos. Sci. 62, 2098–2117 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Bollen, B., Inder, B.: Estimating daily volatility in financial markets utilizing intraday data. J. Empir. Financ. 9(5), 551–562 (2002)

    Article  Google Scholar 

  16. Bradley, R.C.: Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2, 107–144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brandt, M.W., Santa-Clara, P.: Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. J. Financ. Econ. 63, 161–210 (2002)

    Article  Google Scholar 

  18. Christensen, K., Podolskij, M.: Asymptotic theory of range-based multipower variation. J. Financ. Economet. (2012)

  19. Comte, F., Genon-Catalot, V., Rozenholc, Y.: Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13(2), 514–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crommelin, D., Vanden-Eijnden, E.: Reconstruction of diffusions using spectral data from time-series. Commun. Math. Sci. 4, 651–668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crommelin, D., Vanden-Eijnden, E.: Diffusion estimation from multiscale data by operator eigenpairs. SIAM Multiscale Model. Simul. 9(4), 1588–1623 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dacunha-Castelle, D., Duflo, M.: Probability and Statistics: Volume II. Springer, New York (1986)

    Book  MATH  Google Scholar 

  23. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  24. Delattre, M., Genon-Catalot, V., Samson, A.: Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient. MAP5 2014-07. HAL id: hal-01056917. to appear in ESAIM P&S. 2014

  25. Ditlevsen, S., Samson, A.: Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods. Ann. Appl. Stat. 2, 674–702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dolaptchiev, S., Achatz, U., Timofeyev, I.: Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation. Theor. Comput. Fluid Dyn. 27(3–4), 297–317 (2013)

    Article  MATH  Google Scholar 

  27. Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4), 959–993 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Franzke, C., Majda, A.J.: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci. 63, 457–479 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. Franzke, C., Majda, A.J., Vanden-Eijnden, E.: Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci. 62, 1722–1745 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  30. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  31. Friedrich, R., Siegert, S., Peinke, J., Lück, S., Siefert, M., Lindemann, M., Raethjen, G.D.J., Pfister, G.: Extracting model equations from experimental data. Phys. Lett. A 271, 217–222 (2000)

    Article  ADS  Google Scholar 

  32. Gallant, R., Long, J.R.: Estimating stochastic differential equations efficiently by minimum chi-squared. Biometrika 84(1), 125–141 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Genon-Catalot, V.: Parameter estimation for stochastic differential equations from noisy observations. Maximum likelihood and filtering techniques. Lipari 2009 biomathematics summer school, MAP5 2010-03. HAL id: hal-00448996 (2010)

  34. Genon-Catalot, V., Jeantheau, T., Laredo, C.: Limit theorems for discretely observed stochastic volatility models. Bernoulli 4(3), 283–303 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Genon-Catalot, V., Jeantheau, T., Laredo, C.: Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5(5), 855–872 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hairer, M.: Convergence of Markov Processes. Lecture Notes (2010)

  37. Hansen, L., Scheinkman, J., Touzi, N.: Spectral methods for identifying scalar diffusions. J. Economet. 86, 1–32 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  39. Heyde, C.C.: Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation. Springer, New York (1997)

    Book  MATH  Google Scholar 

  40. Ii’in, A., Kalashnikov, A., Olejnik, O.: Linear equations of the second order of parabolic type. Russ. Math. Surv. 17(3), 1 (1962)

    Article  Google Scholar 

  41. Gradisek, R.F.J., Siegert, S., Grabec, I.: Analysis of time series from stochastic processes. Phys. Rev. E 62, 3146–3155 (2000)

    Article  ADS  Google Scholar 

  42. Jain, A., Timofeyev, I., Vanden-Eijnden, E.: Stochastic mode-reduction in models with conservative fast sub-systems. Comm. Math. Sci. 13(2), 297–314 (2015)

  43. Karlin, S., Taylor, H.: A Second Course in Stochastic Processes. Academic Press, (1981)

  44. Kelly, L., Platen, E., Sørensen, M.: Estimation for discretely observed diffusions using transform functions. J. Appl. Probab. 41A, 99–118 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kessler, M., Sørensen, M.: Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5(2), 299–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)

    Book  MATH  Google Scholar 

  47. Ladishenskaya, O., Solonnikov, V., Uraltseva, N.: Linear and Quasiiinear Equations of Parabolic Type. Nauka, Moscow (1967)

    Google Scholar 

  48. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A mathematics framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891–974 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A priori tests of a stochastic mode reduction strategy. Phys. D 170, 206–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: Stochastic models for selected slow variables in large deterministic systems. Nonlinearity 19(4), 769–794 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Melbourne, I., Stuart, A.M.: A note on diffusion limits of chaotic skew-product flows. Nonlinearity 24, 1361 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Norris, J.R., Stroock, D.W.: Estimates on the fundamental solution to heat flows with uniformly elliptic coefficients. Proc. Lond. Math. Soc. 62, 373–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Panzar, L., van Zanten, H.: Nonparametric Bayesian inference for ergodic diffusions. J. Stat. Plan. Inference 139(12), 4193–4199 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Papaspiliopoulos, O., Pokern, Y., Roberts, G.O., Stuart, A.M.: Nonparametric estimation of diffusions: a differential equations approach. Biometrika 99(3), 511–531 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Papavasiliou, A., Pavliotis, G.A., Stuart, A.: Maximum likelihood drift estimation for multiscale diffusions. Stoch. Proc. Appl. 119(10), 3173–3210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Pavliotis, G.A., Stuart, A.: Parameter estimation for multiscale diffusions. J. Stat. Phys. 127, 741–781 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, New York (2008)

    MATH  Google Scholar 

  58. Pedersen, A.R.: A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22(1), 55–71 (1995)

    MathSciNet  MATH  Google Scholar 

  59. Pokern, Y., Stuart, A.M., van Zanten, J.H.: Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs. Stoch. Process. Appl. 123(2), 603–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Porper, F.O., Eidelman, S.D.: Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications. Russ. Math. Surv. 39(3), 119–178 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  61. Prakasa Rao, B.L.S.: Statistical Inference for Diffusion Type Processes (Kendall’s Library Statist. 8). Arnold, London (1999)

    Google Scholar 

  62. Ren, P.: Parametric Estimation of the Heston Model Under the Indirect Observability Framework. PhD thesis, University of Houston, Dept. of Mathematics (2014)

  63. Shepp, L.A., Marcus, M.B.: Sample behavior of Gaussian processes. In: Proc of 6th. Berkeley Symp., pp. 423–442 (1972)

  64. Siegert, S., Friedrich, R., Peinke, J.: Analysis of data sets of stochastic systems. Phys. Lett. A 243, 275–280 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Sørensen, M.: Estimating Functions for Discretely Observed Diffusions: A Review. Lecture Notes–Monograph Series, vol. 32, pp. 305–326. Institute of Mathematical Statistics, Hayward (1997)

    MATH  Google Scholar 

  66. Sroock, D.W., Varadhan, S.: Multidimensional Diffusion Processes. Springer, New York (2005)

    Google Scholar 

  67. Sura, P., Barsugli, J.: A note on estimating drift and diffusion parameters from timeseries. Phys. Lett. A 305, 304–311 (2002)

    Article  ADS  MATH  Google Scholar 

  68. Van Der Meulen, F.H., Van Der Vaart, A.W., Van Zanten, J.H.: Convergence rates of posterior distributions for Brownian semimartingale models. Bernoulli 12(5), 863–888 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zanten, H.V.: Rates of convergence and asymptotic normality of kernel estimators for ergodic diffusion processes. J. Nonparametr. Stat. 13(6), 833–850 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100(472), 1394–1411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I.T. and R.A. were supported in part by the NSF Grant DMS-1109582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Timofeyev.

Appendix: \(L^2\)-consistency for Unobservable Estimators of Lagged 2nd Order Moments

Appendix: \(L^2\)-consistency for Unobservable Estimators of Lagged 2nd Order Moments

In this appendix we present a detailed Proof of Theorem 2, which addresses the \(L^2\)- consistency results for the unobservable sub-sampled empirical estimators \(\bar{X}^\varepsilon \) and \(\hat{K}_X^\varepsilon (u)\) of means and lagged covariances. The hypotheses and notations are those of Theorem 2. Replacing \(X_t\) by the centered process \(X_t - \mu \) and setting \(\mu =0\) is a trivial change in the proof , so we only need to consider the case where all \(X_t\) are centered and \(\mu = 0\).

Step 1 Sums of decorrelation values   For all \(D>0\) and \(j \ge 1\) one has \(D f(jD) \le \int _{(j-1)D}^{j D} f(T) dT \) since the decorrelation rate f(T) is decreasing. This implies

$$\begin{aligned} \sum _{j=1}^{\infty } f(j D) \le \frac{1}{D}\sum _{j=1}^{\infty } \int _{(j-1)D}^{j D} f(T) dT = I(f) / D. \end{aligned}$$
(37)

Define the function g(qD) for all integers \(q \ge 2\) and all \(D>0\) by

$$\begin{aligned} g(q, D) = \sum _{1 < m < n \le 1+q} f( (n - m) D) = \sum _{j=1}^{q-1} j f(j D) . \end{aligned}$$
(38)

Due to (37), the following inequality holds for all \(D>0\) and \(q \ge 2 \)

$$\begin{aligned} g(q, D) \le (q-1) \sum _{j=1}^{q-1} f(j D) \le ( q-1) I(f) /D. \end{aligned}$$
(39)

Step 2 Sub-sampled empirical means converge in \({\varvec{L}^2}\)   Fix an integer \(j \in [ 1 \ldots r]\). Denote the j-th coordinates of \(X_{n \Delta }\) and of the empirical mean estimator \(\bar{X}^\varepsilon \) by

$$\begin{aligned} U_n = X_{n \Delta }(j) \quad \text {and} \;\; \bar{X}^\varepsilon (j) = \frac{1}{N} (U_1 + \cdots + U_N). \end{aligned}$$

With the notation \(s_j ^2 = {\mathbb {E}}(U_n^2)\), this implies

$$\begin{aligned} N^2 {\mathbb {E}}\left[ (\bar{X}^\varepsilon (j))^2 \right] = N s_j ^2 + 2 \sum _{1 \le m < n \le N } {\mathbb {E}}[U_m U_n] . \end{aligned}$$
(40)

Applying the decorrelation hypothesis (22) and the relations (38), (39), we obtain

$$\begin{aligned} \left| \sum _{1 \le m < n \le N } E(U_m U_n) \right| \le \sum _{1 \le m < n \le N } f((n - m) \Delta ) = g(N-1, \Delta ) \le I(f) \frac{N}{\Delta }. \end{aligned}$$

The definition of the \(L^q\)-norm also implies \(s_j \le \Vert X_t \Vert _2 \le \Vert X_t \Vert _4 =\nu \). Hence, (40) implies

$$\begin{aligned} \left( \Vert \bar{X}^\varepsilon (j) \Vert _2 \right) ^2 \le \frac{\nu ^2 }{N} + \frac{ 2 I(f) }{N \Delta }. \end{aligned}$$

For any \(( r_1 \times r_2)\) random matrix M, and any \(q \ge 1\) our definition of the norm \(\Vert M\Vert ^q\) implies

$$\begin{aligned} \Vert M \Vert _q \le (r_1 r_2)^{1/q} \max _{i, j} \Vert M_{i, j} \Vert _q. \end{aligned}$$
(41)

The inequality \(\Vert \bar{X}^\varepsilon \Vert _2 \le \sqrt{r} \max _{j} \Vert \bar{X}^\varepsilon (j) \Vert _2\), then yields, due to (41),

$$\begin{aligned} \Vert \bar{X}^\varepsilon \Vert _2 \le \sqrt{r} \left( \frac{\nu ^2}{N} + \frac{ 2 I(f) }{N \Delta } \right) ^{1/2} \le \frac{1}{\sqrt{N \Delta } } \left( \nu (r \Delta )^{1/2} + (2 r I(f) )^{1/2} \right) . \end{aligned}$$

Since \(\Delta (\varepsilon ) \rightarrow 0 \) this proves the \(L^2\)-bound in (24) when \(X_t\) is centered and hence in general.

Step 3 Sub-sampled empirical means converge in \({\varvec{L}^4}\)   Basic algebra yields the identities

$$\begin{aligned} N^4 \left( \bar{X}^\varepsilon (j) \right) ^4 = \sum _{m, n, a, b \in [ 1 \ldots N ]} U_a U_b U_m U_n = S_1 + S_2 + 2 S_3 +24 S_4, \end{aligned}$$
(42)

where the sums \(S_1\), \(S_2\), \(S_3\), and \(S_4\) are defined by

$$\begin{aligned} S_1= & {} \sum _{1 \le m \le N } U_m^4 ,\\ S_2= & {} \sum _{1 \le m < n \le N } \left[ 2 U_m^2 U_n^2 + U_m^3 U_n + U_m U_n^3 \right] ,\\ S_3= & {} \sum _{1 \le a < m < n \le N } \left[ U_a^2 U_m U_n + U_a U_m^2 U_n + U_a U_m U_n^2 \right] ,\\ S_4= & {} \sum _{1 \le a < b < m < n \le N } U_a U_b U_m U_n . \end{aligned}$$

Due to the assumption that the \(L^4\) norm of \(X_t\) is bounded uniformly by \(\nu \), one clearly has \(|{\mathbb {E}}( S_1) | \le N \nu ^4\) and \( | {\mathbb {E}}(S_2) | \le 4 N^2 \nu ^4\).

Since we are considering the centered process \(X_t\), \(E(U_n) \equiv 0\), and for \(a < m < n\) the decorrelation hypothesis implies

$$\begin{aligned} \left| {\mathbb {E}}(U_a^2 U_m U_n) \right| = \left| {\mathbb {E}}(U_a^2 U_m U_n) - {\mathbb {E}}(U_a^2 U_m) E (U_n) \right| \le f( (n-m) \Delta ). \end{aligned}$$

Similarly, one shows that

$$\begin{aligned} \left| {\mathbb {E}}(U_a U_m^2 U_n) \right| \le f( (n-m) \Delta ) \text {~~and~~} \left| {\mathbb {E}}(U_a U_m U_n^2) \right| \le f( (m-a) \Delta ). \end{aligned}$$

These bounds and definition (38) yield (for \(N \ge 3\))

$$\begin{aligned} \left| {\mathbb {E}}(S_3) \right| \le \sum _{1 \le a < m < n \le N ]} \; \left[ 2 f( (n-m) \Delta ) + f( (m-a) \Delta ) \right] = 3 \sum _{2 \le m \le N-1 ]} g(m, \Delta ) \end{aligned}$$

which implies, due to the bound (39),

$$\begin{aligned} \left| {\mathbb {E}}(S_3) \right| \le 3 I(f) \sum _{2 \le m \le N-1 ]}(m-1) \le \frac{3 I(f)}{2} \frac{N^2 }{\Delta }. \end{aligned}$$

As above, one also has \( | {\mathbb {E}}(U_a U_b U_m U_n) | \le f( (b-a) \Delta ) \) for \(a < b < m < n \). The expressions of \(S_4\) and \(g(m, \Delta )\) then yield (for \(N \ge 4\))

$$\begin{aligned} \left| {\mathbb {E}}(S_4) \right| \le \sum _{1 \le a <b <m <n \le N ]} f( (b-a) \Delta ) = \sum _{3 \le m <n \le N} g(m, \Delta ) = \sum _{3 \le m \le N-1} (N-m) g(m, \Delta ). \end{aligned}$$

Therefore, due to (39) we obtain for \(N \ge 4\)

$$\begin{aligned} \left| {\mathbb {E}}(S_4) \right| \le \sum _{3 \le m \le N-1} (N-m) I(f) \frac{m}{\Delta } \le \frac{I(f)}{4} \frac{N^3}{\Delta }. \end{aligned}$$

Finally, the bounds on \(| {\mathbb {E}}(S_k) |\), and Eq. (42) entail

$$\begin{aligned} {\mathbb {E}}\left[ \left( \bar{X}^\varepsilon (j) \right) ^4 \right] \le \frac{5 \nu ^4 }{N^2} + \frac{3 I(f)}{N^2 \Delta } + \frac{ 6 I(f)}{N \Delta } \le \frac{C}{N \Delta } \end{aligned}$$
(43)

for some explicit constant C, since \(N(\varepsilon ) \rightarrow \infty \) and \(\Delta (\varepsilon ) \rightarrow 0 \) with \(N(\varepsilon ) \Delta (\varepsilon ) \rightarrow \infty \). In particular for \(\varepsilon \) small enough, one can clearly take \(C = 7 I(f)\). Therefore, Eqs. (41) and (43) imply

$$\begin{aligned} \Vert \bar{X}^\varepsilon \Vert _4 \le r^{1/4} \max _{i, j} \Vert \bar{X}^\varepsilon \Vert _4 \le \frac{(r C)^{1/4}}{(N \Delta )^{1/4}} \end{aligned}$$

which proves the \(L^4\)-bound in (24).

Step 4 Convergence of empirical lagged covariance matrices estimators   Introduce the short-hand notations \(V_n = X_{n \Delta }\) and

$$\begin{aligned} \bar{V}_N= & {} \bar{X}^\varepsilon = \frac{1}{N} \sum _{n=1}^N \, V_n , \end{aligned}$$
(44)
$$\begin{aligned} \tau \bar{V}_N= & {} \tau \bar{X}^\varepsilon =\frac{1}{N} \sum _{n=1}^N \, V_{n+ \kappa }, \end{aligned}$$
(45)
$$\begin{aligned} W_N= & {} \frac{1}{N} \sum _{n=1}^N \, V_n V_{n+ \kappa }^* . \end{aligned}$$
(46)

From the Definition (12), the covariance matrix estimators \(\hat{K}^\varepsilon _X(u) \) can be rewritten as

$$\begin{aligned} \hat{K}^\varepsilon _X(u) = W_N - \bar{V}_N (\tau \bar{V}_N)^* . \end{aligned}$$
(47)

First, we evaluate the term \(\bar{V}_N (\tau \bar{V}_N)^* \) in the equation above. Impose \(0 \le u \le A\) for some fixed A. Thus, by construction

$$\begin{aligned} \Vert \bar{V}_N - \tau \bar{V}_N \Vert _4 \le 2 \kappa \nu / N \le 2 (u+ \Delta ) \nu /N \le 2 (1+A) \nu \frac{1}{N \Delta } \end{aligned}$$

and applying the inequality (18) one arrives at the following relation

$$\begin{aligned} \Vert \bar{V}_N (\tau \bar{V}_N)^* - \bar{V}_N (\bar{V}_N)^* \Vert _2 \le 4 (1+A) \nu ^2 \frac{1}{N \Delta }. \end{aligned}$$
(48)

Since \(\mu = 0\), we also have

$$\begin{aligned} \Vert \bar{V}_N \Vert _4 \le \frac{C}{(N \Delta )^{1/4}} , \end{aligned}$$

as proven in Step 3. This implies, by inequality (18),

$$\begin{aligned} \Vert \bar{V}_N (\bar{V}_N)^* \Vert _2 \le 2 \left[ \frac{C}{(N \Delta )^{1/4}} \right] ^2 = \frac{2 C^2}{(N \Delta )^{1/2}} \end{aligned}$$

which yields, due to Eq. (48),

$$\begin{aligned} \Vert \bar{V}_N (\tau \bar{V}_N)^* \Vert _2 \le \frac{2 C^2}{\sqrt{N \Delta }} + \frac{4 (1+A) \nu ^2 }{N \Delta }. \end{aligned}$$
(49)

By the construction of \(\kappa (u,\varepsilon )\), the “discrete” lag \(\kappa \Delta \) is close to continuous lag u and \(| \kappa \Delta - u | \le \Delta \). Since the true lagged covariance matrices K(u) are locally Lipschitz, there is a constant \(\lambda = \lambda (A)\) such that for all \(0 \le u \le A\) and all \(\varepsilon >0\) the following deterministic inequality holds

$$\begin{aligned} \Vert K(u) - K(\kappa \Delta ) \Vert \le \lambda | u - \kappa \Delta | \le \lambda \Delta . \end{aligned}$$
(50)

Next, we compare the term \(W_N\) in the expression of the covariance estimator (47), with the true covariance matrix \(K(\kappa \Delta )\) evaluated at the “discretized ” time lag \(\kappa \Delta \). Since \(X_t\) is stationary, we have \(K(\kappa \Delta ) = {\mathbb {E}}( V_n V_{n+ \kappa }^*) \) for all n, and formula (46) implies that

$$\begin{aligned} W_N - K(\kappa \Delta ) = \frac{1}{N} \sum _{n=1}^N \; \left( \, V_n V_{n+ \kappa }^* - {\mathbb {E}}[ V_n V_{n+ \kappa }^*] \, \right) . \end{aligned}$$

For any two coordinates \(i, j \in [1 \ldots r]\) denote \(T_n= V_n(i)\) and \(U_n= V_n(j)\) as the i-th and j-th coordinates of \(V_n\), respectively. In addition, we also define

$$\begin{aligned} H_n = T_n U_{n+ \kappa } - {\mathbb {E}}[ T_n U_{n+ \kappa }]. \end{aligned}$$

Clearly \({\mathbb {E}}[H_n] = 0\) and the (ij) coefficient of the matrix \( M = W_N - K(\kappa \Delta )\) is then

$$\begin{aligned} M_{i, j} = \frac{1}{N} \sum _{n=1}^N \, H_n \end{aligned}$$

and

$$\begin{aligned} N^2 {\mathbb {E}}[M_{i, j}^2] = \sum _{(m, n) \in [1 \ldots N] } {\mathbb {E}}[H_m H_n]. \end{aligned}$$
(51)

Next, we partition the summation interval in the expression above into two complementary sets, \(Q^+\) and \(Q^-\), as follows

  • \((m,n) \in Q^+\) whenever \( | n - m | > \kappa \) and \(m, n \in [1 \ldots N] \),

  • \((m,n) \in Q^-\) whenever \( | n - m | \le \kappa \) and \(m, n \in [1 \ldots N]\).

Due to bounded fourth moments of the process \(X_t\) we have \(\left| {\mathbb {E}}[H_m H_n] \right| \le 2 \nu ^4 \). Moreover,

$$\begin{aligned} \text {cardinal} \, (Q^-) = N + \kappa (2N- \kappa -1) \le 3 N \kappa , \end{aligned}$$

and, therefore,

$$\begin{aligned} \left| \sum _{(m,n) \in Q^-} {\mathbb {E}}(H_m H_n) \right| \le 6 \nu ^4 N \kappa . \end{aligned}$$
(52)

For \((m,n) \in Q^+\), the decorrelation rate of the 2nd order moments yields

$$\begin{aligned} | {\mathbb {E}}[H_m H_n] | \le f( | n-m | \Delta ) , \end{aligned}$$

so that

$$\begin{aligned} \left| \sum _{(m,n) \in Q^+} {\mathbb {E}}[H_m H_n] \right| \le \sum _{(m,n) \in Q^+} f( | n-m | \Delta ) . \end{aligned}$$
(53)

Thus, relation (51) and inequalities (52), (53) imply

$$\begin{aligned} N^2 {\mathbb {E}}[M_{i, j}^2] \le \sum _{(m,n) \in Q^+} f( | n-m | \Delta ) + 6 \nu ^4 N \kappa . \end{aligned}$$
(54)

Easy algebra transforms the double sum above into

$$\begin{aligned} \sum _{(m,n) \in Q^+} f( | n-m | \Delta ) = 2 \sum _{\kappa +1 \le s \le N-1} ( N - s ) f( s \Delta ) \le 2 N \sum _{1 \le s \le N-1}f( s \Delta ) \le 2 I(f) \frac{N}{\Delta }, \end{aligned}$$

where Eq. (37) were used in the last inequality. Recall that for \(0 \le u \le A\) and due to the construction of \(\kappa \), one also has

$$\begin{aligned} \kappa \le \frac{u}{\Delta } + \Delta \le \frac{A+1}{\Delta } . \end{aligned}$$

Substituting the last two expressions into (54) we obtain

$$\begin{aligned} {\mathbb {E}}[M_{i, j}^2] \le \left( 2 I(f) + 6 (A+1) \nu ^4 \right) \frac{1}{N \Delta }. \end{aligned}$$

By Eq. (41) we further obtain

$$\begin{aligned} \Vert W_N - K(\kappa \Delta ) \Vert _2 = \Vert M \Vert _2 \le r \left( 2 I(f) + 6 (A+1) \nu ^4 \right) ^{1/2} \frac{1}{\sqrt{N \Delta } }. \end{aligned}$$
(55)

Using the expression for \(\hat{K}^\varepsilon _X(u)\) in (47) and the triangle inequality we can write

$$\begin{aligned} \Vert \hat{K}^\varepsilon _X(u) - K(u) \Vert _2 \le \Vert W_N - K(\kappa \Delta ) \Vert _2 + \Vert K(\kappa \Delta ) -K(u) \Vert _2 + \Vert \bar{V}_N (\tau \bar{V}_N)^* \Vert _2 . \end{aligned}$$

Combining the three bounds in (49), (50), and (55), we obtain, for all \(\varepsilon > 0\) and \(0 \le u \le A\),

$$\begin{aligned} \Vert \hat{K}^\varepsilon _X(u) - K(u) \Vert _2 \le \frac{\Gamma }{\sqrt{N \Delta } } + \lambda \Delta , \end{aligned}$$
(56)

where

$$\begin{aligned} \Gamma = 2 C^2 + r \left( 2 I(f) + 6 (A+1) \nu ^4 \right) ^{1/2} + \frac{ 4 (1+A) \nu ^2}{\sqrt{N \Delta }}. \end{aligned}$$

Moreover, for \(\varepsilon \) small enough, we can take \(C^2 = \sqrt{7r I(f)}\) as discussed in Step 2, and \({4 (1+A) \nu ^2}{(N \Delta )^{-1/2}}\) will become much smaller than \(\sqrt{r I(f)}\). Therefore, for \(\varepsilon \) small enough, one has (using \(\sqrt{a+b} \le \sqrt{a} + \sqrt{b}\)) a simplified expression for the constant \(\Gamma \)

$$\begin{aligned} \Gamma \le \gamma = 8 \sqrt{r I(f)} + 2.5 \nu ^2 \sqrt{A+1}. \end{aligned}$$

This concludes the Proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azencott, R., Ren, P. & Timofeyev, I. Parametric Estimation from Approximate Data: Non-Gaussian Diffusions. J Stat Phys 161, 1276–1298 (2015). https://doi.org/10.1007/s10955-015-1379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1379-6

Keywords

Navigation