Skip to main content
Log in

Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The symmetric simple exclusion process is one of the simplest out-of-equilibrium systems for which the steady state is known. Its large deviation functional of the density has been computed in the past both by microscopic and macroscopic approaches. Here we obtain the leading finite size correction to this large deviation functional. The result is compared to the similar corrections for equilibrium systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kipnis, C., Olla, S., Varadhan, S.R.S.: Hydrodynamics and large deviation for simple exclusion processes. Commun. Pure Appl. Math. 2, 115–137 (1989)

    Article  MathSciNet  Google Scholar 

  2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. P07014 (2007)

  3. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. P07023 (2007)

  4. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bertini, L., De Sole, A., Gabrielli, D., Jona–Lasinio, G., Landim, C.: Fluctuations in stationary non equilibrium states of irreversible processes. Phys. Rev. Lett. 87, 040601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Article  ADS  MATH  Google Scholar 

  7. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geom. 6, 231–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Minimum dissipation principle in stationary non equilibrium states. J. Stat. Phys. 116, 831–841 (2004)

    Article  ADS  MATH  Google Scholar 

  9. Bertini, L., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Thermodynamic transformations of nonequilibrium states. J. Stat. Phys. 149, 773–802 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Weinar, E., Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57, 637–656 (2004)

    Article  Google Scholar 

  11. Bertini, L., Gabrielli, D., Lebowitz, J.: Large deviation for a stochastic model of heat flow. J. Stat. Phys. 121, 843–885 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Derrida, B., Lebowitz, J.L., Speer, E.R.: Free energy functional for nonequilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87, 150601 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  13. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density drofile in the steady state of the symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Derrida, B., Lebowitz, J.L., Speer, E.R.: Exact free energy functional for a driven diffusive open stationary nonequilibrium system. Phys. Rev. Lett. 89, 030601 (2002)

    Article  ADS  Google Scholar 

  15. Derrida, B., Lebowitz, J.L., Speer, E.R.: Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Stat. Phys. 110, 775–810 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Enaud, C., Derrida, B.: Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114, 537–562 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. van Wijland, F., Racz, Z.: Large deviations in weakly interacting boundary driven lattice gases. J. Stat. Phys. 118, 27–54 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Giardinà, C., Kurchan, J., Peliti, L.: Direct evaluation of large-deviation functions. Phys. Rev. Lett. 96, 120603 (2006)

    Article  ADS  Google Scholar 

  19. Lecomte, V., Tailleur, J.: A numerical approach to large deviations in continuous time. J. Stat. Mech. P03004 (2007)

  20. Giardinà, C., Kurchan, J., Lecomte, V., Tailleur, J.: Simulating rare events in dynamical processes. J. Stat. Phys. 45, 787–811 (2011)

    Article  ADS  Google Scholar 

  21. Bunin, G., Kafri, Y., Podolsky, D.: Large deviations in boundary-driven systems: numerical evaluation and effective large-scale behavior. Europhys. Lett. 99, 20002 (2012)

    Article  ADS  Google Scholar 

  22. Kirkpatrick, T.R., Cohen, E.G.D., Dorfman, J.R.: Fluctuations in a nonequilibrium steady state: basic equations. Phys. Rev. A 26, 950–971 (1982)

    Article  ADS  Google Scholar 

  23. Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A 16, 4275–4291 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  24. Schmitz, R., Cohen, E.G.D.: Fluctuations in a fluid under a stationary heat-flux. 1. General theory. J. Stat. Phys. 39, 285–316 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  25. Dorfman, J.R., Kirkpatrick, T.R., Sengers, J.V.: Generic long-range correlations in molecular fluids. Annu. Rev. Phys. Chem. 45, 213–239 (1994)

    Article  ADS  Google Scholar 

  26. Ortiz de Zarate, J.M., Sengers, J.V.: On the physical origin of long-ranged fluctuations in fluids in thermal nonequilibrium states. J. Stat. Phys. 115, 1341–1359 (2004)

    Article  ADS  MATH  Google Scholar 

  27. Derrida, B., Lebowitz, J.L., Speer, E.R.: Entropy of open lattice systems. J. Stat. Phys. 126, 1083–1108 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Bodineau, T., Derrida, B., Lecomte, V., van Wijland, F.: Long range correlations and phase transition in non-equilibrium diffusive systems. J. Stat. Phys. 133, 1013–1031 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: On the long range correlations of thermodynamic systems out of equilibrium (2007). cond-mat arXiv:0705.2996

  30. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A, Math. Gen. 40, R333–R441 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Bertini, L., Gabrielli, A.D., Jona-Lasinio, G., Landim, C.: Thermodynamic transformations of nonequilibrium states. J. Stat. Phys. 149, 773–802 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eyink, G., Lebowitz, J.L., Spohn, H.: Hydrodynamics of stationary non-equilibrium states for some stochastic lattice gas models. Commun. Math. Phys. 132, 253–283 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Eyink, G., Lebowitz, J.L., Spohn, H.: Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state. Commun. Math. Phys. 140, 119–131 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  37. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der mathematischen Wissenschaften, vol. 324. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  38. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  39. Lebowitz, J.L., Percus, J.K.: Statistical thermodynamics of nonuniform fluids. J. Math. Phys. 4, 116–123 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Appert-Rolland, C., Derrida, B., Lecomte, V., van Wijland, F.: Universal cumulants of the current in diffusive systems on a ring. Phys. Rev. E 78, 021122 (2008)

    Article  ADS  Google Scholar 

  41. Imparato, A., Lecomte, V., Van Wijland, F.: Equilibrium-like fluctuations in some boundary-driven open diffusive systems. Phys. Rev. E 80, 011131 (2009)

    Article  ADS  Google Scholar 

  42. Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Duality for stochastic models of transport. arXiv:1212.3154

  43. Bertini, L., De Sole, A., Gabrielli, D., Jona–Lasinio, G., Landim, C.: Lagrangian phase transitions in nonequilibrium thermodynamic systems. J. Stat. Mech. L11001 (2010)

  44. Bunin, G., Kafri, Y., Podolsky, D.: Cusp singularities in boundary-driven diffusive systems. arXiv:1301.1708

  45. Bunin, G., Kafri, Y., Podolsky, D.: Non differentiable large-deviation functionals in boundary-driven diffusive systems. J. Stat. Mech. L10001 (2012)

  46. Tailleur, J., Kurchan, J., Lecomte, V.: Mapping out-of-equilibrium into equilibrium in one-dimensional transport models. J. Phys. A, Math. Theor. 41, 505001 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Vincent Hakim for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Derrida.

Appendices

Appendix A: Additivity formulae

It is known [3, 30, 31] and has been used in several previous works [12, 13] that the steady state measure of the SSEP with injection and removal rates α,β,γ,δ, as defined in the introduction, can be calculated by the matrix ansatz [30, 31]. The probability of any microscopic configuration {n 1,…,n L } (with n i =0 or 1) is given by

$$ P\bigl(\{n_1, \ldots, n_L\} \bigr) = \frac{\langle W | X_1 X_2 \ldots X_L | V \rangle}{ \langle W | (D+E)^L |V \rangle} $$
(55)

where each matrix X i depends on the occupation n i of site i

$$ X_i = n_i D + (1 - n_i) E $$
(56)

and the matrices D,E and the vectors |V〉,〈W| satisfy the following algebraic rules

$$\begin{aligned} & DE-ED= D+E \\ & \langle W | ( \alpha E - \gamma D) = \langle W| \\ & ( \beta D - \delta E)| V \rangle= | V \rangle . \end{aligned}$$
(57)

Given these algebraic rules, one can define a family of left and right eigenvectors 〈ρ a ,a| and |ρ b ,b〉 by

$$ \langle\rho_a,a| \bigl(\rho_a E - (1- \rho_a) D \bigr) = a \langle\rho_a,a| $$
(58)
$$ \bigl( (1-\rho_b) D - \rho_b E \bigr) | \rho_b,b \rangle= b |\rho_b,b \rangle . $$
(59)

The vectors 〈W| and |V〉 which appear in (55), (57) are examples of such eigenvectors

$$ \langle W| =\langle\rho_a,a| ,\qquad | V \rangle= | \rho_b,b \rangle $$
(60)

when ρ a =α/(α+γ), ρ b =δ/(δ+β) and a=1/(α+γ) , b=1/(δ+β) as in (1), (10).

Then for 0<b<1 and ρ a >ρ b , one can prove the following key additivity formula

$$ \frac{\langle\rho_a,a| X_1 X_2 |\rho_b,b \rangle}{ \langle\rho_a,a| \rho_b,b \rangle} = \oint\frac{d \rho }{ 2 \pi i}\frac{ (\rho_a - \rho_b)^{a+b}}{(\rho _a-\rho)^{a+b} (\rho-\rho_b) }\frac{\langle\rho_a,a| X_1 |\rho,b \rangle}{ \langle \rho_a,a|\rho,b \rangle} \frac{\langle\rho,1-b| X_2 |\rho_b,b \rangle}{\langle\rho,1-b|\rho_b,b \rangle} $$
(61)

where X 1 and X 2 are arbitrary polynomials of D’s and E’s and the contour is such that ρ b <|ρ|<ρ a .

Proof of (61)

Let us first derive of the following identity [13]

$$ \frac{\langle\rho_a,a| (D+E)^L |\rho_b,b \rangle }{\langle\rho_a,a |\rho_b,b \rangle} = \frac{\varGamma(a+b+ L)}{\varGamma(a+b) (\rho_a - \rho_b)^L} . $$
(62)

To do so one can notice that in the steady state of the SSEP, as defined in the introduction, the average occupations satisfy

$$\alpha- (\alpha+ \gamma) \langle n_1 \rangle= \langle n_1 - n_2 \rangle = \cdots\langle n_i - n_{i+1} \rangle = \cdots= ( \beta+ \delta) \langle n_L \rangle- \delta . $$

These L equations which express simply that in the steady state the current is conserved, can be solved. From the solution (14) one can see that

$$\langle n_i- n_{i+1} \rangle=\frac{(\rho_a- \rho_b) }{ L + a+b-1} . $$

On the other hand using the matrix representation (55), (57), (60) one has

$$\begin{aligned} \langle n_i - n_{i+1} \rangle =& \frac{\langle\rho_a,a|(D+E)^{i-1}(DE-ED) (D+E)^{L-i-1} |\rho_b,b \rangle}{ \langle\rho_a,a |(D+E)^L|\rho_b,b \rangle} \\ =& \frac{\langle\rho_a,a| (D+E)^{L-1} |\rho_b,b \rangle}{\langle\rho _a,a |(D+E)^L|\rho_b,b \rangle} . \end{aligned}$$

These two identities give the recursion

$$\frac{\langle\rho_a,a| (D+E)^{L-1} |\rho_b,b \rangle }{\langle\rho _a,a |(D+E)^L |\rho_b,b \rangle} = \frac{(\rho_a- \rho_b) }{ L + a+b-1} $$

which establishes the veracity of (62).

Now to prove (61) (as in [3]) one can first notice that the discussion can be limited to X 1 and X 2 of the form

$$\begin{aligned} X_1 &= \bigl[\rho_a E - (1-\rho_a) D \bigr]^{p_1} [ D + E]^{q_1} \\ X_2 &= [ D + E]^{p_2} \bigl[ (1-\rho_b) D - \rho_b E\bigr]^{q_2} \end{aligned}$$

as any polynomial in D’s and E’s can be written as a sum of such terms (this is because D and E are linear functions of the operators A and B defined by A=D+E and B=ρ a E−(1−ρ a )D and that ABBA=A. Thus any word made up of A’s and B’s can be ordered as a sum of terms of the form \(B^{p_{1}} A^{q_{1}}\) or \(A^{p_{2}} B^{q_{2}}\)). Then the left hand side of (61) becomes

$$ \frac{\langle\rho_a,a| X_1 X_2 |\rho_b,b \rangle}{ \langle\rho_a,a| \rho_b,b \rangle} = a^{p_1} b^{q_2} \frac{\langle\rho_a,a| (D+E)^{{q_1+p_2}} |\rho_b,b \rangle}{\langle \rho_a,a| \rho_b,b \rangle} $$
(63)

while the right hand side of (61) becomes

$$ a^{p_1} b^{q_2} \oint\frac{d \rho }{2 \pi i} \frac{(\rho_a - \rho _b)^{a+b} }{ (\rho_a-\rho)^{a+b} (\rho-\rho_b) }\frac{\langle\rho_a,a| (D+E)^{q_1} |\rho,b \rangle}{ \langle\rho_a,a|\rho,b \rangle} \frac{\langle\rho,1-b| (D+E)^{p_2} |\rho_b,b \rangle}{ \langle\rho,1-b|\rho_b,b \rangle} $$
(64)

and the equality of (63) and (64) follows from the expression (62) and the Cauchy theorem. This completes the derivation of (61).

First consequence of (61)

It is possible to show directly from the algebra (55), (57) that

$$\frac{\langle\rho_a,a| D |\rho_b,b \rangle}{\langle\rho_a,a| \rho_b,b \rangle} = \frac{ b \rho_a + a \rho_b}{ \rho_a - \rho_b} ; \qquad \frac{\langle\rho_a,a| E |\rho_b,b \rangle}{ \langle\rho_a,a| \rho_b,b \rangle} = \frac{b(1-\rho_a) + a ( 1-\rho_b) }{\rho_a - \rho_b} $$

which becomes by replacing ρ a by ρ and a by 1−b

$$\frac{\langle\rho,1-b| D |\rho_b,b \rangle}{\langle\rho,1-b| \rho_b,b \rangle} = b + \frac{ \rho_b }{ \rho- \rho_b} ; \qquad \frac{\langle\rho,1-b| E |\rho_b,b \rangle}{ \langle\rho,1-b| \rho_b,b \rangle} = - b + \frac{ 1-\rho_b }{ \rho- \rho_b} . $$

Therefore (61) becomes after integration

$$\begin{aligned} \frac{\langle\rho_a,a| X_0 D |\rho_b,b \rangle}{ \langle\rho_a,a| \rho_b,b \rangle} &= b \frac{\langle\rho_a,a| X_0 |\rho_b,b \rangle}{ \langle\rho_a,a|\rho _b,b \rangle} \\ &\quad+ \rho_b \frac{ d }{ d \rho} \biggl[ \biggl( \frac{\rho_a - \rho_b }{ \rho_a - \rho} \biggr)^{a+b} \frac{\langle\rho_a,a| X_0 |\rho,b \rangle}{ \langle\rho_a,a|\rho,b \rangle} \biggr] \bigg\vert _{\rho=\rho_b} , \end{aligned}$$
(65)
$$\begin{aligned} \frac{\langle\rho_a,a| X_0 E |\rho_b,b \rangle}{ \langle\rho_a,a| \rho_b,b \rangle} &= - b \frac{\langle\rho_a,a| X_0 |\rho_b,b \rangle}{ \langle\rho_a,a|\rho _b,b \rangle} \\ &\quad + (1- \rho_b) \frac{ d }{ d \rho} \biggl[ \biggl( \frac{\rho_a - \rho_b }{ \rho_a - \rho} \biggr)^{a+b} \frac{\langle\rho_a,a| X_0 |\rho,b \rangle}{ \langle\rho_a,a|\rho,b \rangle} \biggr] \bigg\vert _{\rho=\rho_b} . \end{aligned}$$
(66)

These last two formulae are exact and valid for all values of ρ a ,ρ b ,a,b. (They have been derived from (61) under the condition that ρ a >ρ b and 0<b<1, but as all expressions are rational functions of all their arguments, they remain valid everywhere.)

From (66) it is possible to show that Φ(μ,h) defined by

$$ \varPhi(\mu,h) = \frac{ \langle W | \exp[ (e^h D + E) \mu] | V \rangle }{ \langle W | V \rangle} $$
(67)

satisfies the following equation

$$\frac{d \varPhi}{ d \mu}= \frac{ b(1+ \rho_a (e^h-1)) + a (1+ \rho_b (e^h-1)) }{ \rho_a-\rho_b} \varPhi+ \bigl(1+\rho_b \bigl(e^h-1\bigr)\bigr) \frac{ d \varPhi}{ d\rho_b} . $$

This equation can be solved by the method of characteristics, which tells us that the solution is of the form

The fact that Φ(0,h)=1 determines the unknown function and one gets

$$\begin{aligned} \begin{aligned}[b] \varPhi(\mu,h) &= \biggl( \frac{(\rho_a- \rho_b) ( e^h -1) }{ 1+ \rho_a (e^h-1) - \exp[\mu(e^h-1)] ( 1 + \rho_b(e^h-1)) } \biggr)^{a+b}\\ &\quad \times \exp\bigl[b \mu\bigl(e^h-1\bigr) \bigr] \end{aligned} \end{aligned}$$
(68)

(see Eqs. (3.7)–(3.10) of [13]).

This expression becomes singular as μμ 0 with

$$\mu_0=\frac{1 }{ e^h-1}\log \biggl(\frac{1+ \rho_a(e^h-1) }{ 1+ \rho _b(e^h-1)} \biggr) $$

and by analysing the power law singularity one can get the asymptotic expression valid for large L

$$ \dfrac{\langle W | (e^h D + E)^L | V \rangle }{ \langle W | V \rangle } \simeq \dfrac{\varGamma(a+b+ L) (\rho_a-\rho_b)^{a+b} \ \mu _0^{-L-a-b} }{ \varGamma(a+b) \ (1+\rho_a(e^h-1))^a \ (1+\rho_b(e^h-1))^b } . $$
(69)

Second consequence of (61)

Another important consequence which can be obtained by dividing (61) by (62) is the following additivity formula

$$\begin{aligned} & \frac{\langle\rho_a,a|X_1 X_2|\rho_b,b\rangle}{ \langle\rho_a,a| (D+E)^{L+L'} | \rho_b,b\rangle} \\ &\quad = \frac{\varGamma(L+a+b) \varGamma(L'+1) }{ \varGamma(L+L'+a+b)} \oint_{\rho_b<|\rho|<\rho_a} \frac{d\rho}{2i\pi} \\ &\qquad\times \frac{(\rho_a-\rho_b)^{a+b+L+L'}}{(\rho_a-\rho)^{a+b+L}(\rho-\rho_b)^{1+L'}} \frac{\langle\rho_a,a|X_1|\rho, b\rangle}{ \langle\rho_a,a| (D+E)^L | \rho, b\rangle} \frac{\langle\rho,1-b|X_2|\rho_b,b\rangle}{ \langle\rho,1-b| (D+E)^{L'} | \rho_b,b\rangle} . \end{aligned}$$
(70)

which is the same as Eq. (65) of [3] up to the prefactor which was wrong in [3] and which is corrected here. This formula allows one to compute the properties of a lattice of L+L′ sites if one knows those of two systems of size L and L′.

Third consequence of (61)

Using (66) and (62) one can write an exact recursion for Z L defined in (2)

$$ Z_{L+1}= \biggl[1+ \rho_b \ e^{h_{L+1}} + b \frac{\rho_a-\rho_b }{ L+a+b} \ e^{h_{L+1}} \biggr] Z_L + \frac{ (\rho_a-\rho_b) (1+ \rho_b \ e^{h_{L+1}} ) }{ L+a+b} \frac{d Z_L }{ d \rho_b} . $$
(71)

We won’t use this recursion relation in this paper, but we believe that it could be an alternative starting point to recover the result (9) and possibly further corrections.

Appendix B: Derivation of (51), (52), (53) in the equilibrium case

Let us consider a site dependent field h i with small variations

$$z_i= h_i - h $$

around a certain value h. One can then expand G L defined in (2), (3) in powers of the z i ’s

$$G_L(h_1, \ldots, h_L) = G_L(h , \ldots, h ) + \sum_i z_i \langle n_i\rangle + \frac{1 }{ 2} \sum_{i , j} z_i z_j \langle n_i n_j \rangle_c + O \bigl(z^3 \bigr) $$

where 〈.〉 denotes an average in the constant field h. Far from the boundaries i.e. when i≫1 and Li≫1, the correlations become translational invariant (because the system is at equilibrium)

$$ \langle n_i \rangle= g'(h ) ;\qquad \langle n_i n_j \rangle_c = c_{j-i}(h ) $$
(72)

and

$$g''(h)= \sum_{k=-\infty}^\infty c_k(h) . $$

One can rewrite G L (h 1,…,h L ) as

$$\begin{aligned} G_L(h_1, \ldots, h_L) =& G_L(h , \ldots, h ) + g'(h ) \sum _i z_i + \frac{c_0(h ) }{ 2 } \sum _i z_i^2 + \sum _{k \ge1} c_k(h ) \sum_{i=1 }^{L-k} z_i \, z_{i+k} \\ &{}+\sum_i z_i \bigl(\langle n_i\rangle - g'(h ) \bigr)+ \frac{1 }{ 2} \sum _{i , j} z_i z_j \bigl( \langle n_i n_j \rangle_c -c_{j-i}(h ) \bigr) \\ &{}+ O \bigl(z^3 \bigr) \end{aligned}$$
(73)

and using the fact (which follows from (73) by looking at the term proportional to L when all the h i ’s are equal) that

$$g(h_i)= g(h ) + z_i\, g'(h ) + \frac{z_i^2 }{ 2} \sum_{k =-\infty} ^\infty c_k(h )+ O \bigl(z^3 \bigr) $$

one gets

$$\begin{aligned} & G_L(h_1, \ldots, h_L) - \sum _i g(h_i) \\ &{}\quad = G_L(h, \ldots, h) - L g(h) \\ &{}\qquad + \sum_{k \ge1} c_k(h ) \Biggl[ \sum_{i=1 }^{L-k} \biggl( z_i z_{i+k}-\frac{z_i^2 + z_{i+k}^2 }{ 2} \biggr) -\frac{1 }{ 2} \sum_{i= 1}^k z_i^2 - \frac{1 }{ 2} \sum_{i= L-k+1 }^L z_i^2 \Biggr] \\ &{}\qquad +\sum_i z_i \bigl( \langle n_i\rangle - g'(h ) \bigr)+ \frac{1 }{ 2} \sum_{i , j} z_i z_j \bigl( \langle n_i n_j \rangle_c -c_{j-i}(h ) \bigr) + O \bigl(z^3 \bigr) . \end{aligned}$$
(74)

In the large L limit, the correlation functions, near the boundaries, have a limit which is not translational invariant

$$\langle n_i \rangle- g'(h ) \to a_i^{\rm left }(h ) ;\qquad \langle n_{L-i} \rangle- g'(h ) \to a_i^{\rm right}(h ) $$

whereas

$$\langle n_i \, n_j \rangle_c- c_{j-i}(h ) \to b_{i,j}^{\rm left }(h ) ; \qquad \langle n_{L-i} \, n_{L-j} \rangle_c- c_{j-i}(h ) \to b_{i,j}^{\rm right }(h ) . $$

One then should have

$$ \frac{d A^{\rm left} (h) }{ dh} = \sum_{i=1}^{\infty} a_i^{\rm left }(h) ; \qquad \frac{d A^{\rm right} (h) }{ dh} = \sum _{i=0}^{\infty} a_i^{\rm right }(h) , $$
(75)
$$ \frac{d a_i^ {\rm left } (h) }{ dh} = \sum_{j} b_{i,j}^{\rm left }(h) - \sum_{k \ge i} c_{k}(h) ;\qquad \frac{d a_i^ {\rm right } (h) }{ dh} = \sum _{j} b_{i,j}^{\rm right }(h) - \sum _{k \ge{i+1}} c_{k}(h) $$
(76)

so that using (46) and the fact that c k (h)=c k (h)

$$\frac{d^2 A^{\rm left} (h) }{ dh^2} = \sum_{i\ge1,j \ge1} b_{i,j}(h) - \sum_{k \ge1} k \, c_{k}(h) ; \qquad \frac{d^2 A^{\rm right} (h) }{ dh^2} = \sum _{i\ge0,j \ge0} b_{i,j}(h) - \sum _{k \ge1} k\, c_{k}(h) . $$

For large L this becomes

$$\begin{aligned} & G_L(h_1, \ldots, h_L) - \sum _i g(h_i) \\ &\quad = A^{\rm left}(h) + A^{\rm right}(h) \\ & \qquad + \sum_{k \ge1} c_k(h ) \Biggl[ \sum_{i=1 }^{L-k} \biggl( z_i z_{i+k}-\frac{z_i^2 + z_{i+k}^2 }{ 2} \biggr) -\frac{1 }{ 2} \sum _{i= 1}^k z_i^2 - \frac{1 }{ 2} \sum_{i= L-k+1 }^L z_i^2 \Biggr] \\ & \qquad +\sum_i z_i \bigl(\langle n_i\rangle - g'(h ) \bigr)+ \frac{1 }{ 2} \sum _{i , j} z_i z_j \bigl( \langle n_i n_j \rangle_c -c_{j-i}(h ) \bigr) + O \bigl(z^3 \bigr) \end{aligned}$$

which can be rewritten, up to terms of third order in the z i ’s

$$ G_L(h_1, \ldots, h_L) - \sum _i g(h_i) = D^{\rm left} + D^{\rm right}- \sum_{k \ge1} c_k(h_i) \Biggl[ \sum_{i=1 }^{L-k} \frac{ ( h_i- h_{i+k})^2 }{ 2} \Biggr] $$
(77)

where

$$\begin{aligned} D^{\rm left} =& A^{\rm left} (h_1) - \frac{1 }{ 2} \sum_{k \ge1} c_k(h_1) \Biggl[ \sum_{i=1 }^k (h_i-h_1)^2 \Biggr] +\sum_i (h_i-h_1) \, a_i^{\rm left }(h_1) \\ &{} + \frac{1 }{ 2} \sum_{i , j} (h_i-h_1) (h_j-h_1)\, b_{i,j}^{\rm left }(h_1) + O \bigl(z^3 \bigr) \end{aligned}$$

and

$$\begin{aligned} D^{\rm right} =& A^{\rm right} (h_L) - \frac{1 }{ 2} \sum_{k \ge1} c_k(h_L) \Biggl[ \sum_{i=1 }^k (h_{L+1-i}-h_L)^2 \Biggr] +\sum_i (h_{L-i} -h_L)\, a_i^{\rm right}(h_L) \\ &{} + \frac{1 }{ 2} \sum_{i , j} (h_{L-i}-h_L) (h_{L-j}-h_L) \, b_{i,j}^{\rm right}(h_L) + O \bigl(z^3 \bigr) . \end{aligned}$$

All the differences h i h j which appear in (77) are between nearby sites i,j. Under this form, the differences h i h j between remote sites do not need to be small. In what follows we will assume that (77) remains true as long as these differences h i h j remain small for nearby sites (i.e. for |ij|≪λ) even if these differences could be large when |ij|∼λ.

Now for a slowly varying field of the form (4), with L= as in (5) one can evaluate the different terms using the Euler MacLaurin formula

$$\begin{aligned} &\sum_{i=1}^L g(h_i) \simeq \lambda \int_0^y g\bigl(H(x)\bigr) dx - \frac{ H'(y )g'(H(y )) - H'(0) g'(H(0)) }{ 24 \lambda} , \\ & D^{\rm left} \simeq A^{\rm left} \bigl(H(0)\bigr) + \frac{H'(0) }{ \lambda} \sum_{i \ge1} \biggl( i -\frac{1}{ 2} \biggr) a_i^{\rm left }\bigl(H(0)\bigr) , \\ & D^{\rm right} \simeq A^{\rm right} \bigl(H (y ) \bigr) - \frac{H' (y ) }{ \lambda} \sum_{i \ge0} \biggl( i + \frac {1}{ 2} \biggr) a_i^{\rm right } \bigl(H (y ) \bigr) , \\ & \sum_{k \ge1} c_k(h_i) \Biggl[ \sum_{i=1 }^{L-k} \frac{ ( h_i- h_{i+k})^2 }{ 2} \Biggr] \simeq\frac{1 }{ 2\lambda} \int_0^{y } \sum _{k \ge1} k^2\, c_k\bigl(H(x) \bigr) H'(x)^2 dx . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Retaux, M. Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process. J Stat Phys 152, 824–845 (2013). https://doi.org/10.1007/s10955-013-0797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0797-6

Keywords

Navigation