Skip to main content
Log in

Zeros of Airy Function and Relaxation Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

One-dimensional system of Brownian motions called Dyson’s model is the particle system with long-range repulsive forces acting between any pair of particles, where the strength of force is β/2 times the inverse of particle distance. When β=2, it is realized as the Brownian motions in one dimension conditioned never to collide with each other. For any initial configuration, it is proved that Dyson’s model with β=2 and N particles, \(\mbox {\boldmath $X$}(t)=(X_{1}(t),\dots,X_{N}(t)),t\in [0,\infty),2\leq N<\infty\) , is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The Airy function \({\rm Ai}(z)\) is an entire function with zeros all located on the negative part of the real axis ℝ. We consider Dyson’s model with β=2 starting from the first N zeros of \({\rm Ai}(z)\) , 0>a 1>⋅⋅⋅>a N , N≥2. In order to properly control the effect of such initial confinement of particles in the negative region of ℝ, we put the drift term to each Brownian motion, which increases in time as a parabolic function: Y j (t)=X j (t)+t 2/4+{d 1+∑ N =1 (1/a )}t,1≤jN, where \(d_{1}={\rm Ai}'(0)/{\rm Ai}(0)\) . We show that, as the N→∞ limit of \(\mbox {\boldmath $Y$}(t)=(Y_{1}(t),\dots,Y_{N}(t)),t\in [0,\infty)\) , we obtain an infinite particle system, which is the relaxation process from the configuration, in which every zero of \({\rm Ai}(z)\) on the negative ℝ is occupied by one particle, to the stationary state \(\mu_{{\rm Ai}}\) . The stationary state \(\mu_{{\rm Ai}}\) is the determinantal point process with the Airy kernel, which is spatially inhomogeneous on ℝ and in which the Tracy-Widom distribution describes the rightmost particle position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Adler, M., van Moerbeke, P.: The spectrum of coupled random matrices. Ann. Math. 149, 921–976 (1999)

    Article  MATH  Google Scholar 

  3. Adler, M., van Moerbeke, P.: PDF’s for the joint distributions of the Dyson, Airy and Sine processes. Ann. Probab. 33, 1326–1361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Dyson, F.J.: The three fold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Ferrari, P.L., Spohn, H.: Constrained Brownian motion: Fluctuations away from circular and parabolic barriers. Ann. Probab. 33, 1302–1325 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flajolet, P., Louchard, G.: Analytic variations on the Airy distribution. Algorithmica 31, 361–377 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B 553(PM), 601–643 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Grabiner, D.J.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré, Probab. Stat. 35, 177–204 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  12. Katori, M., Tanemura, H.: Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129, 1233–1277 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. doi:10.1007/s00220-009-0912-3. arXiv:0812.4108 [math.PR]

  14. Katori, M., Tanemura, H.: in preparation

  15. Katori, M., Nagao, T., Tanemura, H.: Infinite systems of non-colliding Brownian particles. In: Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. in Pure Math., vol. 39, pp. 283–306. Mathematical Society of Japan, Tokyo (2004). arXiv:math.PR/0301143

    Google Scholar 

  16. Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. Amer. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  17. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  18. Nagao, T., Forrester, P.J.: Multilevel dynamical correlation functions for Dyson’s Brownian motion model of random matrices. Phys. Lett. A 247, 42–46 (1998)

    Article  ADS  Google Scholar 

  19. Nagao, T., Katori, M., Tanemura, H.: Dynamical correlations among vicious random walkers. Phys. Lett. A 307, 29–35 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Osada, H.: Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions. Commun. Math. Phys. 176, 117–131 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. arXiv:0902.3561 [math.PR]

  22. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MATH  Google Scholar 

  23. Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Spohn, H.: Interacting Brownian particles: A study of Dyson’s model. In: Papanicolaou, G. (ed.) Hydrodynamic Behavior and Interacting Particle Systems, IMA Volumes in Mathematics and its Applications, vol. 9, pp. 151–179. Springer, Berlin (1987)

    Google Scholar 

  26. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  27. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-order Differential Equations. Part I, 2nd edn. Clarendon Press, Oxford (1962)

    MATH  Google Scholar 

  28. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Tracy, C.A., Widom, H.: A system of differential equations for the Airy process. Elect. Commun. Probab. 8, 93–98 (2003)

    MATH  MathSciNet  Google Scholar 

  30. Vallée, O., Soares, M.: Airy Functions and Applications to Physics. Imperial College Press, London (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katori, M., Tanemura, H. Zeros of Airy Function and Relaxation Process. J Stat Phys 136, 1177–1204 (2009). https://doi.org/10.1007/s10955-009-9829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9829-7

Keywords

Navigation