Skip to main content
Log in

Generic Two-Phase Coexistence and Nonequilibrium Criticality in a Lattice Version of Schlögl’s Second Model for Autocatalysis

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A two-dimensional atomistic realization of Schlögl’s second model for autocatalysis is implemented and studied on a square lattice as a prototypical nonequilibrium model with first-order transition. The model has no explicit symmetry and its phase transition can be viewed as the nonequilibrium counterpart of liquid-vapor phase separations. We show some familiar concepts from study of equilibrium systems need to be modified. Most importantly, phase coexistence can be a generic feature of the model, occurring over a finite region of the parameter space. The first-order transition becomes continuous as a temperature-like variable increases. The associated critical behavior is studied through Monte Carlo simulations and shown to be in the two-dimensional Ising universality class. However, some common expectations regarding finite-size corrections and fractal properties of geometric clusters for equilibrium systems seems to be inapplicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marro, J., Dickman, R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge, (1999)

    Google Scholar 

  2. Hinrichsen, H.: Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  3. Ódor, G.: Rev. Mod. Phys. 76, 663 (2004)

    Article  ADS  Google Scholar 

  4. Grinstein, G., Yayaprakash, C., He, Y.: Phys. Rev. Lett. 55, 2527 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. de Oliveira, M.J., Mendes, J.F.F., Santos, M.A.: J. Phys. A 26, 2317 (1993)

    ADS  Google Scholar 

  6. Tomé, T., Dickman, R.: Phys. Rev. E 47, 948 (1993)

    ADS  Google Scholar 

  7. Liu, D.J., Pavlenko, N., Evans, J.W.: J. Stat. Phys. 114, 101 (2004)

    Article  MATH  ADS  Google Scholar 

  8. Machado, E., Buendía, G.M., Rikvold, P.A., Ziff, R.M.: Phys. Rev. E 71, 016120 (2005)

    ADS  Google Scholar 

  9. Liu, D.J., Evans, J.W.: J. Chem. Phys. 117, 7319 (2002)

    Article  ADS  Google Scholar 

  10. Machado, E., Buendıa, G.M., Rikvold, P.A.: Phys. Rev. E 71, 031603 (2005)

    ADS  Google Scholar 

  11. Durrett, R.: SIAM Rev. 41, 677 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, D.J., Guo, X., Evans, J.W.: Phys. Rev. Lett. 98, 050601 (2007)

    Article  ADS  Google Scholar 

  13. Guo, X., Liu, D.J., Evans, J.W.: Phys. Rev. E 75, 061129 (2007)

    ADS  Google Scholar 

  14. Guo, X., Evans, J.W., Liu, D.J.: Physica A 387, 177 (2008)

    Article  ADS  Google Scholar 

  15. Schlögl, F.: Z. Phys. 253, 147 (1972)

    Article  ADS  Google Scholar 

  16. Brosilow, B.J., Ziff, R.M.: Phys. Rev. A 46, 4534 (1992)

    Article  ADS  Google Scholar 

  17. Toom, A.L.: In: Dobrushin, R.L., Sinai, Y.G. (eds.) Multicomponent Random Systems. Advances in Probability and Related Topics, vol. 6, pp. 549–575. Dekker, New York (1980), Chap. 18

    Google Scholar 

  18. Bennett, C.H., Grinstein, G.: Phys. Rev. Lett. 55, 657 (1985)

    Article  ADS  Google Scholar 

  19. Muñoz, M.A., de los Santos, F., da Gama, M.M.T.: Eur. Phys. J. B 43, 73 (2005)

    ADS  Google Scholar 

  20. Hinrichsen, H., Livi, R., Mukamel, D., Politi, A.: Phys. Rev. E 61, R1032 (2000)

    ADS  Google Scholar 

  21. Drouffe, J.M., Godréche, C.: J. Phys. A 32, 249 (1999)

    MATH  ADS  MathSciNet  Google Scholar 

  22. Ziff, R.M., Gulari, E., Barshad, Y.: Phys. Rev. Lett. 56(24), 2553 (1986)

    Article  ADS  Google Scholar 

  23. Orkoulas, G., Fisher, M.E., Panagiotopoulos, A.Z.: Phys. Rev. E 63, 051507 (2001)

    ADS  Google Scholar 

  24. Coniglio, A., Klein, W.: J. Phys. A 13, 2775 (1980)

    ADS  Google Scholar 

  25. Stella, A.L., Vanderzande, C.: Phys. Rev. Lett. 62, 1067 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hu, C.K., Mak, K.S.: Phys. Rev. B 39, 2948 (1989)

    Article  ADS  Google Scholar 

  27. Liu, D.J., Evans, J.W.: Phys. Rev. Lett. 84, 955 (2000)

    Article  ADS  Google Scholar 

  28. Liu, D.J., Evans, J.W.: Phys. Rev. B 62, 2134 (2000)

    Article  ADS  Google Scholar 

  29. Fortunato, S.: Phys. Rev. B 67, 014102 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Jiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DJ. Generic Two-Phase Coexistence and Nonequilibrium Criticality in a Lattice Version of Schlögl’s Second Model for Autocatalysis. J Stat Phys 135, 77–85 (2009). https://doi.org/10.1007/s10955-009-9708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9708-2

Keywords

Navigation