Skip to main content
Log in

Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine the thermal conductivity and bulk viscosity of a one-dimensional (1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site potentials. This system is equivalent to the FPU-α β system in a subset of its parameter space. We identify three distinct frequency regimes which we call the hydrodynamic regime, the perturbative regime and the collisionless regime. In the lowest frequency regime (the hydrodynamic regime) heat is transported ballistically by long wavelength sound modes. The model that we use to describe this behaviour predicts that as ω→0 the frequency dependent bulk viscosity, \(\hat{\zeta}(\omega)\) , and the frequency dependent thermal conductivity, \(\tilde{\kappa}(\omega)\) , should diverge with the same power law dependence on ω. Thus, we can define the bulk Prandtl number, \(Pr_{\zeta}=k_{B}\hat{\zeta}(\omega)/(m\hat{\kappa }(\omega))\) , where m is the particle mass and k B is Boltzmann’s constant. This dimensionless ratio should approach a constant value as ω→0. We use mode-coupling theory to predict the ω→0 limit of Pr ζ . Values of Pr ζ obtained from simulations are in agreement with these predictions over a wide range of system parameters. In the middle frequency regime, which we call the perturbative regime, heat is transported by sound modes which are damped by four-phonon processes. This regime is characterized by an intermediate-frequency plateau in the value of \(\hat{\kappa}(\omega)\) . We find that the value of \(\hat{\kappa}(\omega)\) in this plateau region is proportional to T −2 where T is the temperature; this is in agreement with the expected result of a four-phonon Boltzmann-Peierls equation calculation. The Boltzmann-Peierls approach fails, however, to give a nonvanishing bulk viscosity for all FPU-α β chains. We call the highest frequency regime the collisionless regime since at these frequencies the observing times are much shorter than the characteristic relaxation times of phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhieser, A.: On the absorption of sound in solids. J. Phys. (USSR) 1, 277–287 (1939)

    Google Scholar 

  2. Alder, B.J., Wainwright, T.E.: Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18, 988–990 (1967)

    Article  ADS  Google Scholar 

  3. Alder, B.J., Wainwright, T.E., Gass, D.M.: Decay of time correlations in two dimensions. Phys. Rev. A 4, 233–237 (1971)

    Article  ADS  Google Scholar 

  4. Ashcroft, N.W., Mermin, N.D.: In: Solid State Physics, p. 507. Harcourt Brace, Orlando (1976)

    Google Scholar 

  5. Ashcroft, N.W., Mermin, N.D.: In: Solid State Physics, p. 493. Harcourt Brace, Orlando (1976)

    Google Scholar 

  6. Ashcroft, N.W., Mermin, N.D.: In: Solid State Physics, p. 508. Harcourt Brace, Orlando (1976). Problem 3

    Google Scholar 

  7. Casati, G.: Controlling the heat flow: now it is possible. Chaos 15, 015120 (2005)

    Article  ADS  Google Scholar 

  8. Cipriani, P., Denisov, S., Politi, A.: From anomalous energy diffusion to Levy walks and heat conductivity in one-dimensional systems. Phys. Rev. Lett. 94, 244–301 (2005)

    Article  Google Scholar 

  9. Delfini, L., Lepri, S., Livi, R., Politi, A.: Anomalous kinetics and transport from 1D self-consistent mode-coupling theory. J. Stat. Mech. P02007, 1–17 (2007)

    Google Scholar 

  10. Denisov, S., Klafter, J., Urbakh, M.: Dynamical heat channels. Phys. Rev. Lett. 91, 194–301 (2003)

    Article  Google Scholar 

  11. DeVault, G.P.: Lowest nonvanishing contribution to lattice viscosity. Phys. Rev. 155, 875–882 (1967)

    Article  ADS  Google Scholar 

  12. Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behaviour of correlation functions. I. Kinetic terms. Phys. Rev. A 1, 2055–2065 (1971)

    Article  ADS  Google Scholar 

  13. Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behaviour of correlation functions. II. Kinetic and potential terms. J. Stat. Phys. 15, 7–22 (1976)

    Article  ADS  Google Scholar 

  14. Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behaviour of correlation functions. III. Local equilibrium and mode-coupling theory. J. Stat. Phys. 15, 23–58 (1976)

    Article  ADS  Google Scholar 

  15. Ford, J.: The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Forster, D.: Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Benjamin, Reading (1975)

    Google Scholar 

  17. Grassberger, P., Nagler, W., Yang, L.: Heat conduction and entropy production in a one-dimensional hard-particle gas. Phys. Rev. Lett. 89, 180601 (2002)

    Article  ADS  Google Scholar 

  18. Gurevich, V.L.: In: Transport in Phonon Systems, p. 244. North Holland, Amsterdam (1986)

    Google Scholar 

  19. Lee-Dadswell, G.R.: Prediction of transport coefficients in one-dimensional systems. Ph.D. Thesis, University of Guelph (2005)

  20. Lee-Dadswell, G.R., Nickel, B.G., Gray, C.G.: Thermal conductivity and bulk viscosity in quartic oscillator chains. Phys. Rev. E 72, 031202 (2005)

    Article  ADS  Google Scholar 

  21. Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43, 271–276 (1998)

    Article  ADS  Google Scholar 

  22. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lepri, S., Livi, R., Politi, A.: Universality of anomalous one-dimensional heat conductivity. Phys. Rev. E 68, 067102 (2003)

    Article  ADS  Google Scholar 

  24. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Butterworth-Heinemann, Oxford (1981)

    Google Scholar 

  25. Lukkarinen, J., Spohn, H.: Anomalous energy transport in the FPU-beta chain. ArXiv:0704.1607

  26. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  27. Nickel, B.G.: The solution to the 4-phonon Boltzmann equation for a 1-d chain in a thermal gradient. J. Phys. A 40, 1219–1238 (2007)

    MATH  ADS  MathSciNet  Google Scholar 

  28. Omelyan, I.P., Mryglod, I.M., Folk, R.: Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Comput. Phys. Commun. 151, 272–314 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Peierls, R.E.: On the kinetic theory of thermal conduction in crystals. In: Dalitz, R.H., Peierls, R.E. (eds.) Selected Scientific Papers of Rudoph Peierls with Commentary, pp. 15–48. World Scientific, Singapore (1997). Originally published in German in Ann. Phys. 3, 1055–1101 (1929)

    Google Scholar 

  30. Peierls, R.E.: Quantum Theory of Solids. Oxford University Press, London (1955)

    MATH  Google Scholar 

  31. Pereverzev, A.: Fermi-Pasta-Ulam β lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68, 056124 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Pomeau, Y., Résibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19, 63–139 (1975)

    Article  ADS  Google Scholar 

  33. Prosen, T., Campbell, D.K.: Momentum conservation implies anomalous energy transport in 1D classical lattices. Phys. Rev. Lett. 84, 2857–2860 (2000)

    Article  ADS  Google Scholar 

  34. Santhosh, G., Kumar, D.: Anomalous thermal conduction in one dimension: a quantum calculation. Phys. Rev. E 76, 021105 (2007)

    Article  ADS  Google Scholar 

  35. Toda, M., Kubo, R., Saitô, N.: Statistical Physics I: Equilibrium Statistical Mechanics. Springer, Berlin (1983)

    Google Scholar 

  36. Wang, J.S., Li, B.: Intriguing heat conduction of a chain with transverse motions. Phys. Rev. Lett. 92, 074302 (2004)

    Article  ADS  Google Scholar 

  37. Woodruff, T.O., Ehrenreich, H.: Absorption of sound in insulators. Phys. Rev. 123, 1553–1559 (1961)

    Article  MATH  ADS  Google Scholar 

  38. Yoshida, T.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. Yu, C., Shi, L., Yao, Z., Li, D., Majumdar, A.: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Lee-Dadswell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee-Dadswell, G.R., Nickel, B.G. & Gray, C.G. Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains. J Stat Phys 132, 1–33 (2008). https://doi.org/10.1007/s10955-008-9551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9551-x

Keywords

Navigation