Skip to main content
Log in

Coalescence of Particles by Differential Sedimentation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a three dimensional system consisting of a large number of small spherical particles, distributed in a range of sizes and heights (with uniform distribution in the horizontal direction). Particles move vertically at a size-dependent terminal velocity. They are either allowed to merge whenever they cross or there is a size ratio criterion enforced to account for collision efficiency. Such a system may be described, in mean field approximation, by the Smoluchowski kinetic equation with a differential sedimentation kernel. We obtain self-similar steady-state and time-dependent solutions to the kinetic equation, using methods borrowed from weak turbulence theory. Analytical results are compared with direct numerical simulations (DNS) of moving and merging particles, and a good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Dongen, P.G.J., Ernst, M.H.: Phys. Rev. Lett. 54(13), 1396–1399 (1985)

    Article  ADS  Google Scholar 

  2. Van Dongen, P.G.J., Ernst, M.H.: J. Stat. Phys. 50(1/2) (1988)

  3. Lee, M.H.: Icarus 143, 74–86 (2000)

    Article  ADS  Google Scholar 

  4. Hunt, J.R.: J. Fluid Mech. 122, 169–185 (1982)

    Article  ADS  Google Scholar 

  5. Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  6. Falkovich, G., Stepanov, M.G., Vucelja, M.: J. Appl. Meteorol. Climatol. 45, 591–599 (2006)

    Article  ADS  Google Scholar 

  7. Jeffrey, D.J.: J. Atmos. Sci. 38, 2440–2443 (1981)

    Article  ADS  Google Scholar 

  8. Connaughton, C., Rajesh, R., Zaboronski, O.: Phys. Rev. E 69, 061114 (2004)

    ADS  MathSciNet  Google Scholar 

  9. Pushkin, D.O., Aref, H.: Phys. Fluids 14(2), 694 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Vinokurov, L.I., Kats, A.V., Kontorovich, V.M.: J. Stat. Phys. 38(1–2), 217–229 (1985)

    Article  ADS  Google Scholar 

  11. Landau, L.D., Lifschitz, E.M.: Fluid Mechanics. Pergamon, Elmsford (1987)

    MATH  Google Scholar 

  12. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Academic, New York (1978)

    Google Scholar 

  13. Smoluchowski, M.: Z. Phys. Chem. (1917)

  14. Valioulis, I.A., List, E.J., Pearson, H.J.: J. Fluid Mech. 143, 387–411 (1984)

    Article  MATH  ADS  Google Scholar 

  15. Friedlander, S.K.: J. Meteor. 17, 479–483 (1960)

    MathSciNet  Google Scholar 

  16. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence. Springer, Berlin (1992)

    MATH  Google Scholar 

  17. Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A.: J. Plasma Phys. 63, 447 (2000)

    Article  ADS  Google Scholar 

  18. Connaughton, C., Nazarenko, S.V.: Phys. Rev. Lett. 92, 044501 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. M. Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvai, P., Nazarenko, S.V. & Stein, T.H.M. Coalescence of Particles by Differential Sedimentation. J Stat Phys 130, 1177–1195 (2008). https://doi.org/10.1007/s10955-007-9466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9466-y

Keywords

Navigation