Skip to main content
Log in

An Analysis of the Transition Zone Between the Various Scaling Regimes in the Small-World Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyse the so-called small-world network model (originally devised by Strogatz and Watts), treating it, among other things, as a case study of non-linear coupled difference or differential equations. We derive a system of evolution equations containing more of the previously neglected (possibly relevant) non-linear terms. As an exact solution of this entangled system of equations is out of question we develop a (as we think, promising) method of enclosing the “exact” solutions for the expected quantities by upper and lower bounds, which represent solutions of a slightly simpler system of differential equation. Furthermore we discuss the relation between difference and differential equations and scrutinize the limits of the spreading idea for random graphs. We then show that there exists in fact a “broad” (with respect to scaling exponents) crossover zone, smoothly interpolating between linear and logarithmic scaling of the diameter or average distance. We are able to corroborate earlier findings in certain regions of phase or parameter space (as e.g. the finite size scaling ansatz) but find also deviations for other choices of the parameters. Our analysis is supplemented by a variety of numerical calculations, which, among other things, quantify the effect of various approximations being made. With the help of our analytical results we manage to calculate another important network characteristic, the (fractal) dimension, and provide numerical values for the case of the small-world network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Strogatz, Exploring Complex Networks, Nature 410:268, (2001).

    Article  ADS  Google Scholar 

  2. D. J. Watts, Small Worlds, The Dynamics of Networks between Order and Randomness, Princt. Univ. Pr. Princeton 1999.

  3. D. J. Watts and S. H. Strogatz, Collective Dynamics of Small World Networks, Nature 393:440, (1998).

    Article  Google Scholar 

  4. R. Albert and A.-L. Barabasi, Statistical Mechanics of Complex Networks, Rev. Mod. Phys. 74:47, (2002). cond-mat/0106096

    Article  ADS  MathSciNet  Google Scholar 

  5. A.-L. Barabasi and E. Bonabeau, Scale-Free Networks, Sci. Am. May 2003 p. 50.

  6. M. E. J. Newman, Models of the Small World, J. Stat. Phys. 101:819 (2000).

    Article  MATH  Google Scholar 

  7. M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Review 45:167 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Barrat and M. Weigt, On the Properties of Small-World Network Models, Eur. Phys. J. B 13:547 (2000).

    Article  ADS  Google Scholar 

  9. M. Requardt, A geometric renormalization group in discrete quantum space-time, J. Math. Phys. 44:5588,(2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. M. Requardt, Scale Free Small World Networks and the Structure of Quantum Space-Time, gr-qc/0308089.

  11. M. Barthélémy and L. A. Nunes Amaral, Small-world networks: Evidence for a crossover picture, Phys. Rev. Lett. 82:3180 (1999). cond-mat/9903108, and A. Barrat, Comment on ‘Small-World networks: Evidence for a crossover picture,’ cond-mat/9903323.

  12. M. E. J. Newman and D. J. Watts, Renormalization Group Analysis of the Small World Network Model, Phys. Lett. A 263:341 (1999). cond-mat/9903357

    Article  ADS  MathSciNet  Google Scholar 

  13. M. E. J. Newman, C. Moore and D. J. Watts, Mean-field solution of the small-world network model, PRL 84:3201 (2000). cond-mat/9909165

    ADS  Google Scholar 

  14. A. D. Barbour and G. Reinert, Small worlds, Random Structures & Algorithms 19:54 (2001). cond-mat/0006001

    MathSciNet  Google Scholar 

  15. B. Bollobas, Random Graphs, Acad. Pr. N. Y. 1985.

  16. B. Bollobas, Modern Graph Theory, Springer, N. Y. 1998.

    Google Scholar 

  17. F. Buckley and F. Harary, Distances in Graphs, Addison-Wesley, N. Y. 1990.

    Google Scholar 

  18. N. E. Noerlund, Vorlesungen ueber Differenzenrechnung, Springer, Berlin 1924.

    Google Scholar 

  19. H. Meschkowski, Differenzengleichungen, Vandenhoeck & Ruprecht, Goettingen 1959.

  20. E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations, Tata McGraw-Hill Publ., New Dehli 1972.

    Google Scholar 

  21. A. Renyi, Wahrscheinlichkeitsrechnung, Deutscher Verlag Wissenschaften, Berlin 1979.

    Google Scholar 

  22. W. Feller, An Introduction to Probability Theory, Vol. I, Wiley, New York 1968.

  23. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, N. Y. 1978.

    Google Scholar 

  24. T. Nowotny and M. Requardt, Dimension Theory of graphs and networks, J. Phys. A. Math. Gen. 31:2447–2463 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  25. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic. Pr. N.Y. 1982.

    Google Scholar 

  26. D. Dhar, Lattices of Effectively Nonintegral Dimensionality, J. Math. Phys. 18:577 (1977).

    ADS  Google Scholar 

  27. Th. Filk, Equivalence of Massive Propagator Distance and Mathematical Distance on Graphs, Mod. Phys. Lett. A 7:2637 (1992).

    ADS  MATH  MathSciNet  Google Scholar 

  28. R. T. Scalettar, Critical Properties of an Ising Model with Dilute Long Range Interactions, Physica A 170:282 (1991).

    Article  ADS  Google Scholar 

  29. G. Csányi and B. Szendröi, Fractal–small-world dichotomy in real-world networks, Phys. Rev. E 70:016122 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lochmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lochmann, A., Requardt, M. An Analysis of the Transition Zone Between the Various Scaling Regimes in the Small-World Model. J Stat Phys 122, 255–278 (2006). https://doi.org/10.1007/s10955-005-8083-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8083-x

Key Words

Navigation