Skip to main content
Log in

The Generalized Canonical Ensemble and Its Universal Equivalence with the Microcanonical Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper shows for a general class of statistical mechanical models that when the microcanonical and canonical ensembles are nonequivalent on a subset of values of the energy, there often exists a generalized canonical ensemble that satisfies a strong form of equivalence with the microcanonical ensemble that we call universal equivalence. The generalized canonical ensemble that we consider is obtained from the standard canonical ensemble by adding an exponential factor involving a continuous function g of the Hamiltonian. For example, if the microcanonical entropy is C2, then universal equivalence of ensembles holds with g taken from a class of quadratic functions, giving rise to a generalized canonical ensemble known in the literature as the Gaussian ensemble. This use of functions g to obtain ensemble equivalence is a counterpart to the use of penalty functions and augmented Lagrangians in global optimization. linebreak Generalizing the paper by Ellis et al. [J. Stat. Phys. 101:999–1064 (2000)], we analyze the equivalence of the microcanonical and generalized canonical ensembles both at the level of equilibrium macrostates and at the thermodynamic level. A neat but not quite precise statement of one of our main results is that the microcanonical and generalized canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the generalized microcanonical entropy s–g is concave. This generalizes the work of Ellis et al., who basically proved that the microcanonical and canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the microcanonical entropy s is concave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barré D. Mukamel S. Ruffo (2002) Ensemble inequivalence in mean-field models of magnetism, in Dynamics and Thermodynamics of Systems with Long Interactions T. Dauxois S. Ruffo E. Arimondo M. Wilkens (Eds) Volume 602 of Lecture Notes in Physics Springer-Verlag New York 45–67

    Google Scholar 

  2. J. Barré D. Mukamel S. Ruffo (2001) ArticleTitleInequivalence of ensembles in a system with long-range interactions Phys. Rev. Lett 87 030601 Occurrence Handle10.1103/PhysRevLett.87.030601 Occurrence Handle11461546

    Article  PubMed  Google Scholar 

  3. D. P. Bertsekas (1982) Constrained Optimization and Lagrange Multiplier Methods Academic Press New York

    Google Scholar 

  4. M. Blume V. J. Emery R. B. Griffiths (1971) ArticleTitleIsing model for the λ transition and phase separation in He3-He4 mixtures Phys. Rev. A 4 1071–1077 Occurrence Handle10.1103/PhysRevA.4.1071

    Article  Google Scholar 

  5. E. P. Borges C. Tsallis (2002) ArticleTitleNegative specific heat in a Lennard–Jones–like gas with long-range interactions Physica A 305 148–151

    Google Scholar 

  6. C. Boucher R. S. Ellis B. Turkington (2000) ArticleTitleDerivation of maximum entropy principles in two-dimensional turbulence via large deviations J. Statist. Phys 98 1235–1278 Occurrence Handle10.1023/A:1018671813486

    Article  Google Scholar 

  7. E. Caglioti P. L. Lions C. Marchioro M. Pulvirenti (1992) ArticleTitleA special class of stationary flows for two-dimensional Euler equations: a statistical mechanical description Commun. Math. Phys 143 501–525

    Google Scholar 

  8. M. S. S. Challa J. H. Hetherington (1988) ArticleTitleGaussian ensemble: an alternate Monte-Carlo scheme Phys. Rev. A 38 6324–6337 Occurrence Handle10.1103/PhysRevA.38.6324 Occurrence Handle9900391

    Article  PubMed  Google Scholar 

  9. M. S. S. Challa J. H. Hetherington (1988) ArticleTitleGaussian ensemble as an interpolating ensemble Phys Rev Lett 60 77–80 Occurrence Handle10.1103/PhysRevLett.60.77 Occurrence Handle10038203

    Article  PubMed  Google Scholar 

  10. M. Costeniuc (2005) Ensemble Equivalence and Phase Transitions for General Models in Statistical Mechanics and for the Curie-Weiss-Potts Model Univ. of Mass Amherst

    Google Scholar 

  11. M. Costeniuc, R. S. Ellis, and H. Touchette, Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. Accepted for publication, J. Math. Phys. 2005.

  12. M. Costeniuc, R. S. Ellis, and H. Touchette, The Gaussian ensemble and universal ensemble equivalence for the Curie-Weiss-Potts model. In preparation, 2005.

  13. T. Dauxois V. Latora A. Rapisarda S. Ruffo A. Torcini (2002) The Hamiltonian mean field model: from dynamics to statistical mechanics and back T. Dauxois S. Ruffo E. Arimondo M. Wilkens (Eds) Dynamics and Thermodynamics of Systems with Long Interactions Springer-Verlag New York 458–487

    Google Scholar 

  14. T. Dauxois P. Holdsworth S. Ruffo (2000) ArticleTitleViolation of ensemble equivalence in the antiferromagnetic mean-field XY model Eur. Phys. J. B 16 659 Occurrence Handle10.1007/s100510070183

    Article  Google Scholar 

  15. J.-D. Deuschel D. W. Stroock H. Zessin (1991) ArticleTitleMicrocanonical distributions for lattice gases Commun. Math. Phys 139 83–101

    Google Scholar 

  16. P. Dupuis R. S. Ellis (1997) A Weak Convergence Approach to the Theory of Large Deviations Wiley New York

    Google Scholar 

  17. R. S. Ellis (1985) Entropy, Large Deviations, and Statistical Mechanics Springer-Verlag New York

    Google Scholar 

  18. R. S. Ellis K. Haven B. Turkington (2002) ArticleTitleAnalysis of statistical equilibrium models of geostrophic turbulence J. Appl. Math. Stoch. Anal 15 341–361

    Google Scholar 

  19. R. S. Ellis K. Haven B. Turkington (2000) ArticleTitleLarge deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles J. Statist. Phys 101 999–1064 Occurrence Handle10.1023/A:1026446225804

    Article  Google Scholar 

  20. R. S. Ellis K. Haven B. Turkington (2002) ArticleTitleNonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows Nonlinearity 15 239–255 Occurrence Handle10.1088/0951-7715/15/2/302

    Article  Google Scholar 

  21. R. S. Ellis R. Jordan P. Otto B. Turkington (2004) ArticleTitleA statistical approach to the asymptotic behavior of a generalized class of nonlinear Schrödinger equations Commun. Math. Phys 244 187–208 Occurrence Handle10.1007/s00220-003-0978-2

    Article  Google Scholar 

  22. R. S. Ellis, P. Otto, and H. Touchette, Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model, Accepted for publication in it Annals of Applied Probability, 2005.

  23. R. S. Ellis H. Touchette B. Turkington (2004) ArticleTitleThermodynamic versus statistical nonequivalence of ensembles for the mean-field Blume-Emery-Griffiths model Physica A 335 518–538

    Google Scholar 

  24. G. L. Eyink H. Spohn (1993) ArticleTitleNegative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence J. Statist. Phys 70 833–886 Occurrence Handle10.1007/BF01053597

    Article  Google Scholar 

  25. H. Föllmer S. Orey (1987) ArticleTitleLarge deviations for the empirical field of a Gibbs measure Ann. Prob 16 961–977

    Google Scholar 

  26. G. B. Folland (1999) Real Analysis: Modern Techniques and Their Applications Wiley New York

    Google Scholar 

  27. H.-O. Georgii (1993) ArticleTitleLarge deviations and maximum entropy principle for interacting random fields on ZZd Ann. Probab 21 1845–1875

    Google Scholar 

  28. J. W. Gibbs (1902) Elementary Principles in Statistical Mechanics with Especial Reference to the Rational Foundation of Thermodynamics Yale University Press New Haven

    Google Scholar 

  29. D. H. E. Gross (1997) ArticleTitleMicrocanonical thermodynamics and statistical fragmentation of dissipative systems: the topological structure of the n-body phase space Phys. Rep 279 119–202 Occurrence Handle10.1016/S0370-1573(96)00024-5

    Article  Google Scholar 

  30. P. Hertel W. Thirring (1971) ArticleTitleA soluble model for a system with negative specific heat Ann. Phys. (NY) 63 520 Occurrence Handle10.1016/0003-4916(71)90025-X

    Article  Google Scholar 

  31. J. H. Hetherington (1987) ArticleTitleSolid 3He magnetism in the classical approximation J. Low Temp. Phys 66 145–154 Occurrence Handle10.1007/BF00681817

    Article  Google Scholar 

  32. J. H. Hetherington D. R. Stump (1987) ArticleTitleSampling a Gaussian energy distribution to study phase transitions of the Z(2) and U(1) lattice gauge theories Phys. Rev. D 35 1972–1978 Occurrence Handle10.1103/PhysRevD.35.1972

    Article  Google Scholar 

  33. R. S. Johal A. Planes E. Vives (2003) ArticleTitleStatistical mechanics in the extended Gaussian ensemble Phys. Rev. E 68 056113 Occurrence Handle10.1103/PhysRevE.68.056113

    Article  Google Scholar 

  34. R. Jordan B. Turkington C. L. Zirbel (2000) ArticleTitleA mean-field statistical theory for the nonlinear Schrödinger equation Physica D 137 353–378

    Google Scholar 

  35. M. K.-H. Kiessling J. L. Lebowitz (1997) ArticleTitleThe micro-canonical point vortex ensemble: beyond equivalence Lett. Math. Phys 42 43–56 Occurrence Handle10.1023/A:1007370621385

    Article  Google Scholar 

  36. M. K.-H. Kiessling T. Neukirch (2003) ArticleTitleNegative specific heat of a magnetically self-confined plasma torus Proc. Natl. Acad. Sci. USA 100 1510–1514 Occurrence Handle10.1073/pnas.252779099 Occurrence Handle12576553

    Article  PubMed  Google Scholar 

  37. V. Latora A. Rapisarda C. Tsallis (2001) ArticleTitleNon-Gaussian equilibrium in a long-range Hamiltonian system Phys. Rev. E 64 056134 Occurrence Handle10.1103/PhysRevE.64.056134

    Article  Google Scholar 

  38. J. L. Lebowitz H. A. Rose E. R. Speer (1989) ArticleTitleStatistical mechanics of a nonlinear Schrödinger equation. II. Mean field approximation J. Statist. Phys 54 17–56 Occurrence Handle10.1007/BF01023472

    Article  Google Scholar 

  39. J. T. Lewis C.-E. Pfister W. G. Sullivan (1994) ArticleTitleThe equivalence of ensembles for lattice systems: some examples and a counterexample J. Statist. Phys 77 397–419

    Google Scholar 

  40. J. T. Lewis C.-E. Pfister W. G. Sullivan (1995) ArticleTitleEntropy, concentration of probability and conditional limit theorems Markov Proc. Related Fields 1 319–386

    Google Scholar 

  41. D. Lynden-Bell R. Wood (1968) ArticleTitleThe gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems Mon. Notic. Roy. Astron. Soc 138 495

    Google Scholar 

  42. J. Miller (1990) ArticleTitleStatistical mechanics of Euler equations in two dimensions Phys. Rev. Lett 65 2137–2140 Occurrence Handle10.1103/PhysRevLett.65.2137 Occurrence Handle10042463

    Article  PubMed  Google Scholar 

  43. M. Minoux (1986) Mathematical Programming: Theory and Algorithms Wiley-Interscience Wiley, Chichester

    Google Scholar 

  44. S. Olla (1988) ArticleTitleLarge deviations for Gibbs random fields Probab. Th. Rel. Fields 77 343–359 Occurrence Handle10.1007/BF00319293

    Article  Google Scholar 

  45. R. Robert (1991) ArticleTitleA maximum-entropy principle for two-dimensional perfect fluid dynamics J. Statist. Phys 65 531–553 Occurrence Handle10.1007/BF01053743

    Article  Google Scholar 

  46. R. Robert J. Sommeria (1991) ArticleTitleStatistical equilibrium states for two-dimensional flows J. Fluid. Mech 229 291–310

    Google Scholar 

  47. R. T. Rockafellar (1970) Convex Analysis Princeton University Press Princeton, NJ

    Google Scholar 

  48. S. Roelly H. Zessin (1993) ArticleTitleThe equivalence of equilibrium principles in statistical mechanics and some applications to large particle systems Expositiones Mathematicae 11 384–405

    Google Scholar 

  49. R. A. Smith T. M. O’Neil (1990) ArticleTitleNonaxisymmetric thermal equilibria of a cylindrically bounded guiding center plasma or discrete vortex system Phys. Fluids B 2 2961–2975 Occurrence Handle10.1063/1.859362

    Article  Google Scholar 

  50. D. R. Stump J. H. Hetherington (1987) ArticleTitleRemarks on the use of a microcanonical ensemble to study phase transitions in the lattice gauge theory Phys. Lett. B 188 359–363 Occurrence Handle10.1016/0370-2693(87)91397-9

    Article  Google Scholar 

  51. W. Thirring (1970) ArticleTitleSystems with negative specific heat Z. Physik 235 339–352 Occurrence Handle10.1007/BF01403177

    Article  Google Scholar 

  52. H. Touchette R. S. Ellis B. Turkington (2004) ArticleTitleAn introduction to the thermodynamic and macrostate levels of nonequivalent ensembles Physica. A 340 138–146 Occurrence HandleMR2088334

    MathSciNet  Google Scholar 

  53. F. Y. Wu (1982) ArticleTitleThe Potts model Rev. Mod. Phys 54 235–268 Occurrence Handle10.1103/RevModPhys.54.235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costeniuc, M., Ellis, R.S., Touchette, H. et al. The Generalized Canonical Ensemble and Its Universal Equivalence with the Microcanonical Ensemble. J Stat Phys 119, 1283–1329 (2005). https://doi.org/10.1007/s10955-005-4407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-4407-0

Keywords

Navigation