Skip to main content

Advertisement

Log in

Hydration Structures and Dynamics of the Sodium Fluoride Aqueous Solutions at Various Temperatures: Molecular Dynamics Simulations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Several arguments suggest sodium-ion batteries as a viable means of large-scale energy storage, among others: low cost of sodium and irreversible capacity of the carbon anodes in sodium-ion batteries are lower than those of lithium-ion batteries. Currently, the focus has been carried out on potassium and sodium-ion-based batteries. In this context, classical molecular dynamics (MD) simulations were performed to study the hydration of NaF ion pairs in water in a wide range of temperatures (278.15–373.15 K) using extended simple point charge (SPC/E) water model and the ions which are modeled as charged Lennard–Jones particles. The radial distribution function (RDF) and coordination number (CN) reveal the characteristics of ion–ion, ion–water, and water–water microstructures. There is significant water clustering near the Na+ and F ions. The hydration structures and dynamic properties were determined at various temperatures and atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012)

    Article  CAS  Google Scholar 

  2. Zhang, Z., Hu, X., Zhou, Y., Wang, S., Yao, L., Pan, H., Su, C., Chen, F., Hou, X.: Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry. J. Mater. Chem. A 6, 8244–8250 (2018)

    Article  CAS  Google Scholar 

  3. Monti, D., Jonsson, E., Palacin, M.R., Johansson, P.: Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J. Power Sources 245, 630–636 (2014)

    Article  CAS  Google Scholar 

  4. Sawickia, M., Shaw, L.L.: Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 5, 53129–53154 (2015)

    Article  Google Scholar 

  5. Kyaw, K.Y., Otsuki, M., Segarra, M.S., Tagami, J.: Effect of sodium fluoride pretreatment on the efficacy of an in-office bleaching agent: an in vitro study. Clin. Exp. Dent. Res. 4, 113–118 (2018)

    Article  Google Scholar 

  6. Shalvey, T.P., Shiel, H., Hutter, O.S., Zoppi, G., Bowen, L., Dhanak, V.R., Major, J.D.: Sodium fluoride doping approach to CdTe solar cells. ACS Appl. Energy Mater. 5, 3888–3897 (2022)

    Article  CAS  Google Scholar 

  7. Nurohmah, A.R., Nisa, S.S., Rikhy Stulasti, K.N., Yudha, C.S., Suci, W.G., Aliwarga, K., Widiyandari, H., Purwanto, A.: Sodium-ion battery from sea salt: a review. Mater. Renew. Sustain. Energy 11, 71–89 (2022)

    Article  Google Scholar 

  8. Errougui, A., Talbi, M., El Kouali, M.: Molecular dynamics simulations of lithium fluoride aqueous solutions: effects of ion concentration on the structural and dynamical properties at T=300 K. Egypt. J. Chem. 65, 1–8 (2022)

    Google Scholar 

  9. Errougui, A., Talbi, M., El Kouali, M., (2021) Structural and dynamical properties simulations of potassium fluoride aqueous system at various temperatures from 29815 to 35815 K. E3S Web of Conferences, 297, 01009

  10. Zhang, X., Liu, X., He, M., Zhang, Y., Sun, Y., Lu, X.: A molecular dynamics simulation study of KF and NaF ion pairs in hydrothermal fluids. Fluid Phase Equilib. 518, 112625 (2020)

    Article  CAS  Google Scholar 

  11. Druchok, M., Holovko, M.: Molecular dynamics study of ion hydration under pressure. J. Mol. Liq. 159, 24–30 (2011)

    Article  CAS  Google Scholar 

  12. Zhou, Y., Huang, Y., Ma, Z., Gong, Y., Zhang, X., Sun, Y., Sun, C.Q.: Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788797 (2016)

    Article  Google Scholar 

  13. Hess, B., Kutzner, C., Van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  14. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  15. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  CAS  Google Scholar 

  16. Fennell, C.J., Bizjak, A., Vlachy, V., Dill, K.A.: Ion pairing in molecular simulations of aqueous alkali halide solutions. J. Phys. Chem. B. 113, 6782–6791 (2009)

    Article  CAS  Google Scholar 

  17. Zeilkiewicz, J.: Structural properties of water: Comparison of the SPC, SPCE, TIP4P and TIP5P models of water. J. Chem. Phys. 123, 104501 (2005)

    Article  Google Scholar 

  18. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

  19. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys 52, 7182–7190 (1981)

    Article  CAS  Google Scholar 

  20. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001)

    Article  CAS  Google Scholar 

  21. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  Google Scholar 

  22. Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  23. Enderby, J.E.: Ion solvation via neutron scattering. Chem. Soc. Rev. 24, 159–168 (1995)

    Article  CAS  Google Scholar 

  24. Guardia, E., Rey, R., Padro, J.A.: Na+–Na+ and Cl–Cl ion pairs in water: mean force potentials by constrained molecular dynamics. J. Chem. Phys. 95, 2823–2831 (1991)

    Article  CAS  Google Scholar 

  25. Zhou, J., Lu, X., Wang, Y., Shi, J.: Molecular dynamics study on ionic hydration. Fluid Phase Equilib. 194–197, 257–270 (2002)

    Article  Google Scholar 

  26. Mahler, J., Persson, I.: A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 51, 425–438 (2012)

    Article  Google Scholar 

  27. Imamura, T., Mizukoshi, Y., Ishiyama, T., Morita, A.: Surface structures of NaF and Na2SO4 aqueous solutions: specific effects of hard ions on surface vibrational spectra. J. Phys. Chem. C 116, 11082–11090 (2012)

    Article  CAS  Google Scholar 

  28. Rinne, K.F., Gekle, S., Netz, R.R.: Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions. J. Phys. Chem. 141, 214502 (2014)

    Article  Google Scholar 

  29. Gong, Y., Zhou, Y., Wu, H., Wu, D., Huang, Y., Sun, C.Q.: Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J Raman Spectrosc. 47, 1351–1359 (2016)

    Article  CAS  Google Scholar 

  30. Hasted, J.B., Ritson, D.M., Collie, C.H.: Dielectric properties of aqueous ionic solutions. Parts I and II. J. Chem. Phys. 16, 1–22 (1948)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that this research received no financial support for research, authorship, and publication.

Author information

Authors and Affiliations

Authors

Contributions

AE and SC contributed to conceptualization, methodology, supervision, writing, and the original draft preparation. AL contributed to visualization, investigation, and software. ME and MT contributed to visualization and validation.

Corresponding author

Correspondence to Abdelkbir Errougui.

Ethics declarations

Competing Interest

The authors declare no conflict of interest, financial or otherwise.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errougui, A., Lahmidi, A., Chtita, S. et al. Hydration Structures and Dynamics of the Sodium Fluoride Aqueous Solutions at Various Temperatures: Molecular Dynamics Simulations. J Solution Chem 52, 176–186 (2023). https://doi.org/10.1007/s10953-022-01222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01222-7

Keywords

Navigation