Skip to main content
Log in

Thermodynamic Modeling of Nitric Acid Speciation Using eUNIQUAC Activity Coefficient Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The speciation of nitric acid was modeled using eUNIQUAC activity coefficient model and the thermodynamic dissociation constant was estimated by solving the dissociation reaction equilibrium. eUNIQUAC model was used for the estimation of activity of species during the estimation of dissociation constant. The eUNIQUAC model parameter was reported for the determination of activity coefficients of ionic species, neutral HNO3 molecule and water activity up to nitric acid concentration of 15 mol·L−1. The estimated dissociation constant at molar scale is 23.89.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Redlich, O, Bigeleisen, J.: The ionization of strong electrolytes. I. General remarks, nitric acid. J Am Chem Soc. 65, 1883–1887 (1943)

    Article  CAS  Google Scholar 

  2. Landolt, H., Börnstein, R., Meyerhoffer, W.: Landolt–Bornstein, Physikalische-Chemische Tabellen, 5th edn. Verlag von Julius Springer, Berlin (1936)

    Google Scholar 

  3. Hood, G.C., Redlich, O., Reilly, C.A.: Ionization of strong electrolytes. III. Proton magnetic resonance in nitric, perchloric, and hydrochloric acids. J Chem Phys. 22, 2067–2071 (1954)

    Article  CAS  Google Scholar 

  4. McKay, H.A.C.: The activity coefficient of nitric acid, a partially ionized 1:1-electrolyte. Trans Faraday Soc. 52, 1568–1573 (1956)

    Article  CAS  Google Scholar 

  5. Hood, G.C., Reilly, C.A.: Ionization of strong electrolytes. VIII. Temperature coefficient of dissociation of strong acids by proton magnetic resonance. J. Chem. Phys. 32, 127–130 (1960)

    Article  CAS  Google Scholar 

  6. Davis, W, De Bruin, H. J.: New activity coefficients of 0–100 per cent aqueous nitric acid. J Inorg Nucl Chem. 26, 1069–1083 (1964)

    Article  CAS  Google Scholar 

  7. Axtmann, R.C., Shuler, W.E., Murray, B.B.: Proton resonance shifts in nitric acid solutions of aluminum nitrate. J Phys Chem. 64, 57–61 (1960).

    Article  CAS  Google Scholar 

  8. Haase, V. R, Ducker, K. H, Kuppers, H. A.: Activity coefficients and dissociation constants of aqueous nitric acid and Per Chloric acid. BerBunsenges Rhys Chem. 69, 97–109 (1965)

    CAS  Google Scholar 

  9. Redlich, O., Duerst, R.W., Merbach, A.: Ionization of strong electrolytes. XI. The molecular states of nitric acid and perchloric acid. J. Chem. Phys. 49, 2986–2994 (1968)

    Article  CAS  Google Scholar 

  10. Irish, D.E., Puzic, O.: Raman spectral study of the constitution and equilibria of nitric acid and d-nitric acid. J. Solution Chem. 10, 377–393 (1981)

    Article  CAS  Google Scholar 

  11. Hamer, W.J., Wu, Y.: Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25 degrees Celsius. J Phys Chem Ref Data. 1, 1047–1100 (1972)

    Article  CAS  Google Scholar 

  12. Strehlow, H., Wagner, I., Hildebrandt, P.: Chemical exchange and Raman line broadening. The rate of protolysis of nitric acid. Ber. Bunsenges. Phys. Chem. 87, 516–522 (1983)

    Article  CAS  Google Scholar 

  13. Vilariño, T., Bernard, O., Simonin, J. P.: Ionic solutions in the binding mean spherical approximation. Thermodynamics of associating electrolytes up to very high concentrations. J. Phys. Chem. B. 108, 5763–5770 (2004)

    Article  Google Scholar 

  14. Goldberg, R.N., Manley, J.L., Nuttal, R.L.: Program gamphi for calculating activity and osmotic coefficients of aqueous electrolyte solutions at 298.15 K. National Bureau of Standards, Chemical Thermo-dynamics Division, Gathersburg (1984)

  15. Ruas, A., Pochon, P., Simonin, J., Moisy, P.: Nitric acid: modeling osmotic coefficients and acid–base dissociation using the BIMSA theory. Dalton Trans. 39, 10148–10153 (2010)

    Article  CAS  Google Scholar 

  16. Charrin, N., Moisy, P., Blanc, P.: Thermodynamic study of the ternary system Th(NO3)4/HNO3/H2O. Radiochim. Acta 86, 143–149 (1999)

  17. Hlushak, S.P., Simonin, J.P., De Sio, S., Bernard, O., Ruas, A., Pochon, P., Jan, S., Moisy, P.: Speciation in aqueous solutions of nitric acid. Dalton Trans. 42, 2853–2860 (2013)

    Article  CAS  Google Scholar 

  18. Levanov, A.V., Isaikina, O.Y., Lunin, V.V.: Dissociation constant of nitric acid. Russ. J. Phys. Chem. A 91, 1221–1228 (2017)

    Article  CAS  Google Scholar 

  19. Ravi Kanth M.V.S.R., Subramaniam, P., Narasimhan, S., Narasimha, B. M.: Development of a thermodynamic model using a speciation framework: Illustration on HNO3–H2O system. Ind Eng Chem Res. 57, 5136–5141 (2018)

  20. Christensen, S.G., Thomsen, K.: Modeling of vapor–liquid–solid equilibria in acidic aqueous solutions. Ind. Eng. Chem. Res. 42, 4260–4268 (2003)

  21. Sander, B.O.: Calculation of vapor–liquid equilibria in nitric acid–water–nitrate salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1185–1195 (1986)

  22. Wang, M., Gorensek, M.B., Chen, C.C.: Thermodynamic representation of aqueous sodium nitrate and nitric acid solution with electrolyte NRTL model. Fluid Phase Equilib. 407, 105–116 (2015)

  23. Thomsen, K.: Modeling electrolyte solutions with the extended universal quasichemical (UNIQUAC) model. Pure Appl. Chem. 77(3), 531–542 (2005)

  24. Thomsen, K., Rasmussen, P., Gani, R.: Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems. Chem Eng Sci. 51, 3675–3683 (1996)

  25. Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess gibbs energy of electrolyte systems Part I: Single solvent, single completely dissociated electrolyte systems. AlChE J. 28(4), 588–596 (1982)

  26. Kubic Jr, W.L., Jackson, J.C.: A thermodynamic model of plutonium (IV) nitrate solutions. J Radioanal Nucl Chem. 293, 601–612 (2012)

  27. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Amer. Chem. Soc. 102(9), 2902–2906 (1980)

    Article  CAS  Google Scholar 

  28. Robinson, R., Stokes R.H.: Electrolyte solutions. Dover Publications, NY (2002)

    Google Scholar 

  29. Bronsted, J.N.: Studies on solubility. IV. The Principle of the specific interaction of ions. J. Am. Chem. Soc. 44(5), 877–898 (1922)

  30. Ravi Kanth, M.V.S.R., Pushpavanam, S., Narasimhan, S., Narasimha, M.B.A.: Robust and efficient algorithm for computing reactive equilibria in single and multiphase systems. Ind. Eng. Chem. Res. 53, 15278–15286 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balasubramonian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The partial Gibbs energy of un dissociated HNO3 can be represented as follows

$$\overline{G}_{{{\text{HNO}}_{{3}} }} = \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right) + RT\ln a_{{{\text{HNO}}_{{3}} }} \left( x \right)$$
(A1)
$$\overline{G}_{{{\text{HNO}}_{{3}} }} = \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( m \right) + RT\ln a_{{{\text{HNO}}_{{3}} }} \left( m \right)$$
(A2)

where \(\overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right)\) and \(\overline{G}_{{{\text{HNO}}_{{3}} }} \left( m \right)\) are the standard state partial Gibbs energy of un dissociated HNO3 in mole fraction and molal scale respectively. The activity of un dissociated HNO3 is given as follows

$$a_{{{\text{HNO}}_{{3}} }} \left( x \right) = x_{{{\text{HNO}}_{{3}} }} f_{{{\text{HNO}}_{{3}} }}$$
(A3)
$$a_{{{\text{HNO}}_{{3}} }} \left( m \right) = m_{{{\text{HNO}}_{{3}} }} \gamma_{{{\text{HNO}}_{{3}} }}$$
(A4)

where \(x_{{{\text{HNO}}_{{3}} }}\) and \(m_{{{\text{HNO}}_{{3}} }}\) are the mole fraction and molality of undissociated HNO3, respectively \(f_{{{\text{HNO}}_{{3}} }}\) and \(\gamma_{{{\text{HNO}}_{{3}} }}\) is the activity coefficient in mole fraction and molal scale respectively,

Now substituting Eqs. A3 and A4 in A1 and A2 gives

$$\overline{G}_{{{\text{HNO}}_{{3}} }} = \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right) + RT\ln x_{{{\text{HNO}}_{{3}} }} f_{{{\text{HNO}}_{{3}} }}$$
(A5)
$$\overline{G}_{{{\text{HNO}}_{{3}} }} = \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( m \right) + RT\ln m_{{{\text{HNO}}_{{3}} }} \gamma_{{{\text{HNO}}_{{3}} }}$$
(A6)

Partial Gibbs energy is constant irrespective of the concentration scale used, So now equating the Eqs. A5 and A6 we get

$$\overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right) + RT\ln x_{{{\text{HNO}}_{{3}} }} f_{{{\text{HNO}}_{{3}} }} = \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( m \right) + RT\ln m_{{{\text{HNO}}_{{3}} }} \gamma_{{{\text{HNO}}_{{3}} }}$$
(A7)

So by rearranging the above equation

$$\ln f_{{{\text{HNO}}_{{3}} }} = \frac{{\overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( m \right) - \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right)}}{RT} + \ln \frac{{m_{{{\text{HNO}}_{{3}} }} }}{{x_{{{\text{HNO}}_{{3}} }} }} + \ln \gamma_{{{\text{HNO}}_{{3}} }}$$
(A8)

The relation between Mole fraction and molality can be written as

$$x_{{{\text{HNO}}_{{3}} }} = \frac{{m_{{{\text{HNO}}_{{3}} ,st\left( {1 - \alpha } \right)}} }}{{m_{{{\text{HNO}}_{3} ,st\left( {1 - \alpha } \right)}} + \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + {{1000} \mathord{\left/ {\vphantom {{1000} {W_{{\text{A}}} }}} \right. \kern-\nulldelimiterspace} {W_{{\text{A}}} }}}}$$
(A9)

where \(m_{{{\text{HNO}}_{{3}} }} - m_{{{\text{HNO}}_{3} ,st}} \left( {1 - \alpha } \right)\), α is the degree of dissociation, ν is the number of ions produced during dissociation and WA is the molecular weight of the solvent.

Now substituting Eqs. A9 in A8 gives as

$$\ln f_{{{\text{HNO}}_{3} }} = \frac{{\overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( m \right) - \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right)}}{RT} + \ln \left( {m_{{{\text{HNO}}_{3} ,st\left( {1 - \alpha } \right)}} + \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + {{1000} \mathord{\left/ {\vphantom {{1000} {W_{{\text{A}}} }}} \right. \kern-\nulldelimiterspace} {W_{{\text{A}}} }}} \right) + \ln \gamma_{{{\text{HNO}}_{{3}} }}$$
(A10)

when \(m_{{{\text{HNO}}_{3} {,}st}} \to 0\), \(f_{{{\text{HNO}}_{3} }}\) and \(\gamma_{{{\text{HNO}}_{3} }}\) tend to one, so Eq. A10 becomes

$$\frac{{\overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( m \right) - \overline{G}_{{{\text{HNO}}_{3} }}^{0} \left( x \right)}}{RT} = - \ln \left( {\frac{1000}{{W_{{\text{A}}} }}} \right)$$
(A11)

Substituting Eq. A11 into A10

$$\ln f_{{{\text{HNO}}_{3} }} = - \ln \left( {\frac{1000}{{W_{{\text{A}}} }}} \right) + \ln \left( {m_{{{\text{HNO}}_{3} ,st\left( {1 - \alpha } \right)}} + \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + {{1000} \mathord{\left/ {\vphantom {{1000} {W_{{\text{A}}} }}} \right. \kern-\nulldelimiterspace} {W_{{\text{A}}} }}} \right) + \ln \gamma_{{{\text{HNO}}_{{3}} }}$$
(A12)

After rearranging we get the expression as follows

$$\ln f_{{{\text{HNO}}_{{3}} }} = \ln \left( {0.001W_{{\text{A}}} m_{{{\text{HNO}}_{3} ,st\left( {1 - \alpha } \right)}} + 0.001W_{{\text{A}}} \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + 1} \right) + \ln \gamma_{{{\text{HNO}}_{{3}} }}$$
(A13)

and further simplification results in the following relation between mole fraction activity coefficient to molal activity coefficient

$$f_{{{\text{HNO}}_{{3}} }} = \gamma_{{{\text{HNO}}_{{3}} }} \left( {0.001W_{{\text{A}}} m_{{{\text{HNO}}_{3} ,st}} \left( {1 - \alpha } \right) + 0.001W_{{\text{A}}} \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + 1} \right)$$
(A14)

Similar to the above equation relation between the molal activity coefficient and molar activity coefficient (yHNO3) is given as follows

$$y_{{{\text{HNO}}_{{3}} }} = \frac{{\gamma_{{{\text{HNO}}_{{3}} }} m_{{{\text{HNO}}_{{3}} }} \rho_{0} }}{{M_{{{\text{HNO}}_{{3}} }} }}$$
(A15)

where ρ0 is the density of water at 25 °C. Now substitute expression for γHNO3 using equation A14 in A15 we get

$$y_{{{\text{HNO}}_{3} }} = \frac{{m_{{{\text{HNO}}_{{3}} }} \rho_{0} }}{{M_{{{\text{HNO}}_{{3}} }} }}\left( {\frac{{f_{{{\text{HNO}}_{{3}} }} }}{{\left( {0.001W_{{\text{A}}} m_{{{\text{HNO}}_{3} ,st}} \left( {1 - \alpha } \right) + 0.001W_{A} \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + 1} \right)}}} \right)$$
(A16)

The conversion from molal concentration to molar concentration is given as follows

$$m_{{{\text{HNO}}_{{3}} }} = \frac{{M_{{{\text{HNO}}_{{3}} }} }}{{\left( {\rho_{0} - 0.001M_{{{\text{HNO}}_{3} ,st}} W_{{\text{B}}} } \right)}}$$
(A17)

By substituting the Eq. A17 into A16 we get the required relation between the mole fraction activity coefficient to molar activity coefficient of un dissociated nitric acid

$$y_{{{\text{HNO}}_{{3}} }} = f_{{{\text{HNO}}_{{3}} }} \frac{{\rho_{0} }}{{\left( {\rho_{0} - 0.001M_{{{\text{HNO}}_{3} ,st}} W_{{\text{B}}} } \right)\left( {0.001W_{{\text{A}}} m_{{{\text{HNO}}_{3} ,st}} \left( {1 - \alpha } \right) + 0.001W_{{\text{A}}} \nu m_{{{\text{HNO}}_{3} ,st}} \alpha + 1} \right)}}$$
(A18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramonian, S., Pandey, N.K., Shekhar, K. et al. Thermodynamic Modeling of Nitric Acid Speciation Using eUNIQUAC Activity Coefficient Model. J Solution Chem 50, 1300–1314 (2021). https://doi.org/10.1007/s10953-021-01124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01124-0

Keywords

Navigation