Skip to main content

Advertisement

Log in

Solubility Parameters Measurements of 1-Propyl-3-Methyl-Imidazolium-Based Ionic Liquids via Inverse Gas Chromatography and Hansen Solubility Parameter in Practice

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Hildebrand solubility parameters and the Flory–Huggins interaction parameter of four 1-propyl-3-methylimidazolium ([C3mim]) based ionic liquids (ILs) with different anions ([NTf2], [BF4], [SCN] and [CF3CO2]) were investigated by inverse gas chromatography (IGC). The IGC characterization was carried out at temperatures ranging between 313.15 and 343.15 K. The Hansen solubility parameters (HSPs) of the four ILs were calculated using the Hansen Solubility Parameter in Practice software at T = 298.15 K. The Hildebrand solubility parameters of the four [C3mim]-based ILs were determined as \(\delta_{{2([\text{C}_{3} \text{mim}][\text{NTf}_{2} ])}}\) = 22.51 (MPa)0.5, \(\delta_{{2([\text{C}_{3} \text{mim}][\text{BF}_{4} ])}}\) = 23.15 (MPa)0.5, \(\delta_{{2([\text{C}_{3} \text{mim}][\text{SCN}])}}\) = 24.03 (MPa)0.5, and \(\delta_{{2([\text{C}_{3} \text{mim}][\text{CF}_{3} \text{CO}_{2} ])}}\) = 26.81 (MPa)0.5 by extrapolation at 298.15 K. The HSPs at T = 298.15 K for the four ILs obtained by Hansen solubility sphere method show that \(\delta_{{\text{T}([\text{C}_{3} \text{mim}][\text{NTf}_{2} ])}}\) = 21.70 (MPa)0.5, \(\delta_{{\text{T}([\text{C}_{3} \text{mim}][\text{BF}_{4} ])}}\) = 22.78 (MPa)0.5, \(\delta_{{\text{T}([\text{C}_{3} \text{mim}][\text{SCN}])}}\) = 23.49 (MPa)0.5 and \(\delta_{{\text{T}([\text{C}_{3} \text{mim}][\text{CF}_{3} \text{CO}_{2} ])}}\) = 26.06 (MPa)0.5. The results showed that the Hansen solubility sphere method provides the same tendency with the measurement results of IGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weerachanchai, P., Chen, Z., Leong, S.S.J., Chang, M.W., Lee, J.-M.: Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem. Eng. J. 213, 356–362 (2012)

    Article  CAS  Google Scholar 

  2. Singh, S.K., Savoy, A.W.: Ionic liquids synthesis and applications: an overview. J. Mol. Liq. 297, 112038 (2020)

    Article  CAS  Google Scholar 

  3. Huang, Y., Zhang, X., Zhao, Y., Zeng, S., Dong, H., Zhang, S.: New models for predicting thermophysical properties of ionic liquid mixtures. Phys. Chem. Chem. Phys. 17(40), 26918–26929 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Kasprzak, D., Krystkowiak, E., Stępniak, I., Galiński, M.: Dissolution of cellulose in novel carboxylate-based ionic liquids and dimethyl sulfoxide mixed solvents. Eur. Polym. J. 113, 89–97 (2019)

    Article  CAS  Google Scholar 

  5. Chong, F.K., Eljack, F.T., Atilhan, M., Foo, D.C.Y., Chemmangattuvalappil, N.G.: A systematic visual methodology to design ionic liquids and ionic liquid mixtures: green solvent alternative for carbon capture. Comput. Chem. Eng. 91, 219–232 (2016)

    Article  CAS  Google Scholar 

  6. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38(9), 2590–2599 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Adamska, K., Voelkel, A.: Hansen solubility parameters for polyethylene glycols by inverse gas chromatography. J. Chromatogr. A 1132(1–2), 260–267 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, L., Wang, Q., Ma, K.J.: Solubility parameter of ionic liquids: a comparative study of inverse gas chromatography and Hansen solubility sphere. ACS Sustain. Chem. Eng. 7(12), 10544–10551 (2019)

    Article  CAS  Google Scholar 

  9. Zhao, S., Zhang, W., Zhang, F., Li, B.: Determination of Hansen solubility parameters for cellulose acrylate by inverse gas chromatography. Polym. Bull. 61(2), 189–196 (2008)

    Article  CAS  Google Scholar 

  10. Ovejero, G., Pérez, P., Romero, M.D., Guzmán, I., Dı´ez, E.: Solubility and Flory Huggins parameters of SBES, poly(styrene-b-butene/ethylene-b-styrene) triblock copolymer, determined by intrinsic viscosity. Eur. Polym. J. 43(4), 1444–1449 (2007)

    Article  CAS  Google Scholar 

  11. Moghaddam, M.B., Goharshadi, E.K., Moosavi, F.: Structural and transport properties and solubility parameter of graphene/glycerol nanofluids: a molecular dynamics simulation study. J. Mol. Liq. 222, 82–87 (2016)

    Article  CAS  Google Scholar 

  12. Yagi, Y., Inomata, H., Saito, S.: Solubility parameter of an N-isopropylacrylamide gel. Macromolecules 25(11), 2997–2998 (1992)

    Article  CAS  Google Scholar 

  13. Abbott, S., Hansen, C.M.: Hansen solubility parameters in practice. CRC Press, Boca Raton (2008)

    Google Scholar 

  14. Hansen, C.M.: Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  15. Dritsas, G.S., Karatasos, K., Panayiotou, C.: Investigation of thermodynamic properties of hyperbranched aliphatic polyesters by inverse gas chromatography. J. Chromatogr. A 1216(51), 8979–8985 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Haiyue, N., Shixue, R., Guizhen, F., Yanli, M.: Determination of solubility parameters and the related thermodynamic properties of polyvinyl alcohol using inverse gas chromatography and Hansen solubility parameters. Chin. J. Chromatogr. 34(9), 933–939 (2016)

    Article  Google Scholar 

  17. Topaloğlu Yazıcı, D., Aşkın, A., Bütün, V.: GC investigation of the solubility parameters of water-soluble homopolymers and double-hydrophilic diblock copolymers. Chromatographia 67(9), 741–747 (2008)

    Article  Google Scholar 

  18. Kaya, İ, Pala, Ç.Y.: Thermodynamics of poly(benzyl methacrylate)–probe interactions at different temperatures by using inverse gas chromatography. Fluid Phase Equilib. 374, 63–69 (2014)

    Article  CAS  Google Scholar 

  19. Zhang, C., Triger, D., Ramer, N.J.: Activity coefficients at infinite dilution for various organic solutes in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate. J. Chem. Thermodyn. 140, 105867 (2020)

    Article  CAS  Google Scholar 

  20. Nahrwold, M.L., Archer, P.G., Cohen, P.J.: Estimation of an equation relating saturated vapor pressure to temperature. Anesthesiology 39(4), 444–445 (1973)

    Article  CAS  PubMed  Google Scholar 

  21. Antoine, M.C.: Nouvelle relation entre les tensions et les temperatures. C. r. held Seanc. Acad. Sci. Paris 107, 681–684 (1888)

    Google Scholar 

  22. Voelkel, A., Strzemiecka, B., Adamska, K., Milczewska, K.: Inverse gas chromatography as a source of physicochemical data. J. Chromatogr. A 1216(10), 1551–1566 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Blanks, R.F., Prausnitz, J.M.: Thermodynamics of polymer solubility in polar and nonpolar systems. Ind. Eng. Chem. Fundam. 3(1), 1–8 (1964)

    Article  CAS  Google Scholar 

  24. DiPaola-Baranyi, G., Guillet, J.E.: Estimation of polymer solubility parameters by gas chromatography. Macromolecules 11(1), 228–235 (1978)

    Article  CAS  Google Scholar 

  25. Barton, A.F.M.: Solubility parameters. Chem. Rev. 75(6), 731–753 (1975)

    Article  CAS  Google Scholar 

  26. Huth, M., Chen, C.-W., Köhling, J., Wagner, V.: Influence of Hansen solubility parameters on exfoliation of organophilic fluoromica. Appl. Clay Sci. 161, 412–418 (2018)

    Article  CAS  Google Scholar 

  27. Morimoto, M., Fukatsu, N., Tanaka, R., Takanohashi, T., Kumagai, H., Morita, T., Tykwinski, R.R., Scott, D.E., Stryker, J.M., Gray, M.R., Sato, T., Yamamoto, H.: Determination of Hansen solubility parameters of asphaltene model compounds. Energy Fuels 32(11), 11296–11303 (2018)

    Article  CAS  Google Scholar 

  28. Al-Saigh, Z.Y., Munk, P.: Study of polymer-polymer interaction coefficients in polymer blends using inverse gas chromatography. Macromolecules 17(4), 803–809 (1984)

    Article  CAS  Google Scholar 

  29. Ayad, A., Mutelet, F., Negadi, A., Acree, W.E., Jiang, B., Lu, A., Wagle, D.V., Baker, G.A.: Activity coefficients at infinite dilution for organic solutes dissolved in two 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons. J. Mol. Liq. 215, 176–184 (2016)

    Article  CAS  Google Scholar 

  30. Chen, Y.L., Wang, Q., Zhang, Z.F., Tang, J.: Determination of the solubility parameter of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate by inverse gas chromatography. Ind Eng Chem Res 51(46), 15293–15298 (2012)

    Article  CAS  Google Scholar 

  31. Li, X.P., Wang, Q., Li, L., Deng, L.S., Zhang, Z.F., Tian, L.Y.: Determination of the thermodynamic parameters of ionic liquid 1-hexyl-3-methylimidazolium chloride by inverse gas chromatography. J. Mol. Liq. 200, 139–144 (2014)

    Article  CAS  Google Scholar 

  32. Mutelet, F., Jaubert, J.-N.: Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. J. Chromatogr. A 1102(1), 256–267 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Pan, X., Chen, Y., Deng, L., Wang, Q.: Determination of infinite dilution activity coefficients of several organic solutes in N-butylpyridinium nitrate/N-octylpyridinium nitrate by blend inverse gas chromatography. J. Chem. Eng. Data 62(10), 3095–3104 (2017)

    Article  CAS  Google Scholar 

  34. Wlazło, M., Karpińska, M., Domańska, U.: Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in 1-allyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquid. J. Chem. Thermodyn. 102, 39–47 (2016)

    Article  Google Scholar 

  35. Wang, W., Wang, Q., Yu, K.: Inverse gas chromatography: effects of the experimental temperature and molecular structure on the solubility parameters of 1-alkyl-3-methylimidazolium hydrogen sulfate ([CnMIM][HSO4], n = 4, 6, and 8). J. Chem. Eng. Data 65(11), 5467–5475 (2020)

    Article  CAS  Google Scholar 

  36. Wang, W., Wang, Q., Tang, J., Wang, Q., Wang, B.: Characterization of the thermodynamic properties of ionic liquid 1-allyl-3-vinylimidazolium bis((trifluorompropyl)sulfonyl)imide by inverse gas chromatography. J. Chem. Thermodyn. 150, 106–112 (2020)

    Article  Google Scholar 

  37. Foco, G.M., Bottini, S.B., Quezada, N., de la Fuente, J.C., Peters, C.J.: Activity coefficients at infinite dilution in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. J. Chem. Eng. Data 51(3), 1088–1091 (2006)

    Article  CAS  Google Scholar 

  38. Ban, T., Li, C.L., Wang, Q.: Determination of the solubility parameter of allyl imidazolium-based ionic liquid using inverse gas chromatography and Hansen solubility parameter in practice. J. Mol. Liq. 271, 265–273 (2018)

    Article  CAS  Google Scholar 

  39. Ban, T., Li, X.-P., Li, C.-L., Wang, Q.: Measurements of the solubility parameter and enthalpies of vaporization in N-alkyl-pyridinium bis((trifluoromethyl)sulfonyl)imide ([CnPY][NTF2], n=4,6,8) ionic liquid. Fluid Phase Equilib. 485, 94–100 (2019)

    Article  CAS  Google Scholar 

  40. Mutelet, F., Butet, V., Jaubert, J.-N.: Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids. Ind. Eng. Chem. Res. 44(11), 4120–4127 (2005)

    Article  CAS  Google Scholar 

  41. Marciniak, A.: The solubility parameters of ionic liquids. Int. J. Mol. Sci. 11(5), 1973–1990 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin, H., O’Hare, B., Dong, J., Arzhantsev, S., Baker, G.A., Wishart, J.F., Benesi, A.J., Maroncelli, M.: Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J. Phys. Chem. B 112(1), 81–92 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Laboukhi-Khorsi, S., Daoud, K., Chemat, S.: Efficient solvent selection approach for high solubility of active phytochemicals: application for the extraction of an antimalarial compound from medicinal plants. ACS Sustain. Chem. Eng. 5(5), 4332–4339 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the National Natural Science Foundation of China (Grant No. 21868037) and 111 Project (Grant No. D18022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, Q., Yalikun, N. et al. Solubility Parameters Measurements of 1-Propyl-3-Methyl-Imidazolium-Based Ionic Liquids via Inverse Gas Chromatography and Hansen Solubility Parameter in Practice. J Solution Chem 50, 1285–1299 (2021). https://doi.org/10.1007/s10953-021-01122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01122-2

Keywords

Navigation