Skip to main content

Advertisement

Log in

An Electrolyte Non-random-UNIQUAC Model for Thermodynamic Modeling of Binary and Multicomponent Aqueous Electrolyte Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An Electrolyte non-random-UNIQUAC (NR-UNIQUAC) local composition model is developed for calculation of the excess Gibbs energy and activity coefficients for binary and the multicomponent electrolyte solutions. A new expression for the energies of the reference cells in the random state is used and a modified version of the UNIQUAC model is provided. The high efficiency of the presented model is demonstrated through the correlation of the available experimental data for various electrolyte solutions. Obtained results are compared with those of Electrolyte-UNIQUAC-NRF model. The correlation of data was carried out using two different approaches, the single system correlation and the global optimization of the interaction parameters. In the single fitting approach, two adjustable binary interaction parameters of the model are regressed using the experimental mean activity coefficient data of binary solutions. In the global approach, the anion-water and cation–anion interaction energy parameters of different ions are calculated via simultaneous correlation of the mean activity coefficient data of the forty-nine binary electrolyte solutions. In both approaches, the adjustable parameters are calculated in a wide range of electrolyte concentrations and at different temperatures, so that these parameters can be used to predict the osmotic coefficient data of many binary systems. Moreover, the solubility and osmotic coefficient data of ternary electrolyte solutions were predicted using the previously obtained binary parameters. Using the present model, the predicted data for the binary and multicomponent electrolyte solutions are in good agreement with the experimental data. When compared to Electrolyte-UNIQUAC-NRF model, the present model is more accurate. Additionally, the presence of salt–salt interaction parameters in the electrolyte-NR-UNIQUAC model can further improve its efficiency when experimental data for a ternary system is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Debye, P., Hückel, E.: De la theorie des electrolytes. I. Abaissement du point de congelation et phenomenes associes. Phys. Z. 24, 185–206 (1923)

    CAS  Google Scholar 

  2. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  3. Guggenheim, E.A.: The specific thermodynamic properties of aqueous solutions of strong electrolytes. Philos. Mag. (Ser. 7) 19, 588–643 (1935)

    Article  CAS  Google Scholar 

  4. Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1935)

    Article  Google Scholar 

  5. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973)

    Article  CAS  Google Scholar 

  6. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  7. Pitzer, K.S.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  8. Cruz, J.L., Renon, H.: A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentrations. AIChE J. 24, 817–830 (1978)

    Article  CAS  Google Scholar 

  9. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  10. Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE J. 28, 588–596 (1982)

    Article  CAS  Google Scholar 

  11. Chen, C.C., Evans, L.B.: A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J. 32, 1655–1664 (1986)

    Article  Google Scholar 

  12. Haghtalab, A., Vera, J.H.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AIChE J. 34, 803–813 (1988)

    Article  CAS  Google Scholar 

  13. Thomsen, K., Rasmussen, P., Gani, R.: Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems. Chem. Eng. Sci. 51, 3675–3683 (1996)

    Article  CAS  Google Scholar 

  14. Jaretun, A., Aly, G.: New local composition model for electrolyte solutions: single solvent, single electrolyte systems. Fluid Phase Equilib. 163, 175–193 (1999)

    Article  CAS  Google Scholar 

  15. Jaretun, A., Aly, G.: New local composition model for electrolyte solutions: multicomponent systems. Fluid Phase Equilib. 175, 213–228 (2000)

    Article  CAS  Google Scholar 

  16. Zhao, E., Yu, M., Sauvé, R.E., Khoshkbarchi, M.K.: Extension of the Wilson model to electrolyte solutions. Fluid Phase Equilib. 173, 161175 (2000)

    Article  Google Scholar 

  17. Sadeghi, R.: New local composition model for electrolyte solutions. Fluid Phase Equilib. 231, 53–60 (2005)

    Article  CAS  Google Scholar 

  18. Messnaoui, B., Ouiazzane, S., Bouhaouss, A., Bounahmidi, T.: A modified electrolyte–UNIQUAC model for computing the activity coefficient and phase diagrams of electrolytes systems. CALPHAD 32, 566–576 (2008)

    Article  CAS  Google Scholar 

  19. Haghtalab, A., Peyvandi, K.: Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib. 281, 163–171 (2009)

    Article  CAS  Google Scholar 

  20. Haghtalab, A., Peyvandi, K.: Generalized electrolyte-UNIQUAC-NRF model for calculation of solubility and vapor pressure of multicomponent electrolytes solutions. J. Mol. Liq. 165, 101–112 (2012)

    Article  CAS  Google Scholar 

  21. Haghtalab, A., Asadollahi, M.A.: An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycol + d-extran. Fluid Phase Equilib. 171, 77–90 (2000)

    Article  CAS  Google Scholar 

  22. Hildebrand, J.H., Scott, R.L.: The Solubility of Non-electrolytes, 3rd edn. Reinhold Publishing Corporation, New York (1950)

    Google Scholar 

  23. Guggenheim, E.A.: Mixtures. Oxford University Press, Oxford (1952)

    Google Scholar 

  24. Song, Y., Chen, C.C.: Symmetric electrolyte nonrandom two-liquid activity coefficient model. Ind. Eng. Chem. Res. 48, 7788–7797 (2009)

    Article  CAS  Google Scholar 

  25. Christensen, C., Sander, B., Fredenslund, A.A., Rasmussen, P.: Towards the extension of UNIFAC to mixtures with electrolytes. Fluid Phase Equilib. 13, 297–309 (1983)

    Article  CAS  Google Scholar 

  26. Mazloumi, S.H.: Representation of activity and osmotic coefficients of electrolyte solutions using a non-electrolyte Wilson-NRF model with ion-specific parameters. Fluid Phase Equilib. 388, 31–36 (2015)

    Article  CAS  Google Scholar 

  27. Mazloumi, S.H.: An ion-based nonelectrolyte NRTL-NRF for aqueous electrolyte solutions. CALPHAD 51, 299–305 (2015)

    Article  CAS  Google Scholar 

  28. Mazloumi, S.H.: On the application of the nonelectrolyte-UNIQUAC-NRF model for strong aqueous electrolyte solutions. Fluid Phase Equilib. 417, 70–76 (2016)

    Article  CAS  Google Scholar 

  29. Ahmadi, H., Peyvandi, K.: Electrolyte-UNIQUAC-NRF model based on ion specific parameters for the correlation of mean activity coefficients of electrolyte solutions. J. Solution Chem. 46, 1202–1219 (2017)

    Article  CAS  Google Scholar 

  30. Kuramochi, H., Osako, M., Kida, A., Nishimura, K., Kawamoto, K., Asakuma, Y., Fukui, K., Maeda, K.: Determination of ion-specific NRTL parameters for predicting phase equilibria in aqueous multi electrolyte solutions. Ind. Eng. Chem. Res. 44, 3289–3297 (2005)

    Article  CAS  Google Scholar 

  31. Thomsen, K., Rasmussen, P.: Modeling of vapor–liquid–solid equilibrium in gas– aqueous electrolyte systems. Chem. Eng. Sci. 54, 1787–1802 (1999)

    Article  CAS  Google Scholar 

  32. Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25°C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)

    Article  CAS  Google Scholar 

  33. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Dover Publications Inc, New York (2002)

    Google Scholar 

  34. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: thirty-six uni-bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764 (1981)

    Article  CAS  Google Scholar 

  35. Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: the alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263–310 (1978)

    Article  CAS  Google Scholar 

  36. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  Google Scholar 

  37. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1996)

    Article  Google Scholar 

  38. Zaytsev, I.D., Aseyev, G.G.: Properties of Aqueous Solutions of Electrolytes. CRC Press, Florida (1992)

    Google Scholar 

  39. Pitzer, K.S., Pelper, J.C., Busey, R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)

    Article  CAS  Google Scholar 

  40. Archer, D.G.: Thermodynamic properties of the NaBr + H2O system. Phys. Chem. Ref. Data 20, 509–555 (1991)

    Article  CAS  Google Scholar 

  41. Amado, G.E., Blanco, L.H.: Osmotic and activity coefficients of aqueous solutions of KCl at temperatures of 283.15, 288.15, 293.15 and 298.15 K, A new isopiestic apparatus. Fluid Phase Equilib. 226, 261–265 (2004)

    Article  CAS  Google Scholar 

  42. Pabalan, R.T., Pitzer, K.S.: Heat capacity and other thermodynamic properties of Na2SO4(aq) in hydrothermal solutions and the solubilities of sodium sulfate minerals in the system Na-Cl–SO4–OH–H2O to 300 °C. Geochim. Cosmochim. Acta 52, 2393–2404 (1988)

    Article  CAS  Google Scholar 

  43. Baabor, S., Gilchrist, M.A., Delgado, E.J.: Isopiestic study of (calcium chloride + water) and (calcium chloride + magnesium chloride + water) at T = 313.15 K. J. Chem. Thermodyn. 33, 405–411 (2001)

    Article  CAS  Google Scholar 

  44. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  45. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Bailey, S.M., Halow, I., Churney, K.L., Nuttal, R.L.: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11(Suppl. 2), 1–392 (1982)

    Google Scholar 

  46. Linke, W.F., Seidell, A.: Solubilities of Inorganic and Metal-Organic Compounds, 4th edn. American Chemical Society, Washington (1965)

    Google Scholar 

  47. Potter II, R.W., Clynne, M.A.: Solubility of NaCl and KCI in aqueous HCI from 20 to 85 °C. J. Chem. Eng. Data 25, 50–51 (1980)

    Article  CAS  Google Scholar 

  48. El Guendouzi, M., Benbiyi, A., Dinane, A., Azougen, R.: The thermodynamic study of the system LiCl–KCl–H2O at the temperature 298.15 K. CALPHAD 27, 213–219 (2003)

    Article  CAS  Google Scholar 

  49. Marouani, M., El Guendouzi, M.: Determination of water activities, osmotic and activity coefficients of the system NH4NO3–LiNO3–H2O at the temperature 298.15 K. CALPHAD 28, 321–327 (2004)

    Article  CAS  Google Scholar 

  50. El Guendouzi, M., Azougen, R., Dinane, A., Benbiyi, A.: Hygrometric determination of the water activities of the aqueous solutions of the mixed electrolyte NaCl–CaCl2–H2O at 25 °C. J. Solution Chem. 33, 941–955 (2004)

    Article  Google Scholar 

  51. Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of lithium chloride, lithium bromide, and lithium iodide. J. Chem. Eng. Data 35, 166–168 (1990)

    Article  CAS  Google Scholar 

  52. Nasirzadeh, K., Neueder, R., Kunz, W.: Vapor pressures and osmotic coefficients of aqueous LiOH solutions at temperatures ranging from 298.15 to 363.15 K. Ind. Eng. Chem. Res. 44, 3807–3814 (2005)

    Article  CAS  Google Scholar 

  53. Robinson, R.A., Platford, R.F., Childs, C.W.: Thermodynamics of aqueous mixtures of sodium chloride, potassium chloride, sodium sulfate, and potassium sulfate at 25 °C. J. Solution Chem. 1(167–172), 65989740 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haghtalab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, S.M., Haghtalab, A. & Khanchi, A.R. An Electrolyte Non-random-UNIQUAC Model for Thermodynamic Modeling of Binary and Multicomponent Aqueous Electrolyte Systems. J Solution Chem 48, 624–657 (2019). https://doi.org/10.1007/s10953-019-00876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00876-0

Keywords

Navigation