Skip to main content
Log in

Study of the Solubility and Transfer Thermodynamics of d,l-Phenylalanine in Aqueous Sodium Chloride and d,l-Serine in Aqueous Sodium Nitrate Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of d,l-phenylalanine in aqueous sodium chloride and d,l-serine in aqueous sodium nitrate at 5 K intervals from 288.15 to 308.15 K are reported in the present study. The standard Gibbs energies (\( \Delta G_{\text{t}}^{0} (i) \)) and entropies (\( \Delta S_{\text{t}}^{0} (i) \)) of transfer were evaluated at 298.15 K from the solubility of these amino acids. The solubilities were measured by an ‘analytical formol titrimetry’ method. The chemical parts of the Gibbs energies (\( \Delta G_{\text{t,ch}}^{0} (i) \)) and entropies (\( T\Delta S_{\text{t,ch}}^{0} (i) \)) of transfer of the amino acids were calculated by subtracting the cavity effects and dipole–dipole interaction effects from the total standard transfer energies. The characteristics of the solubility and solvation thermodynamics of amino acids in such aqueous electrolytes solvent systems were studied and discussed in the light of hydrogen bonding, and hydrophilic and hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lapamje, S.: Physicochemical Aspects of Proteins Denaturation. Wiley, New York (1978)

    Google Scholar 

  2. Islam, M.N., Wadi, R.K.: Thermodynamics of transfer of amino acids from water to aqueous sodium sulphate. Phys. Chem. Liq. 39, 77–84 (2001)

    Article  CAS  Google Scholar 

  3. Dutta, S.C., Lahiri, S.C.: Studies on the dissociation constants and solubilities of amino acids in ethylene glycol+ water mixtures. J. Indian Chem. Soc. 72, 315–322 (1995)

    CAS  Google Scholar 

  4. Sinha, R., Bhattacharya, S.K., Kundu, K.K.: Chemical transfer energetics of the–CH2–group in aqueous glycerol: solvent effect on hydrophobic hydration and its three-dimensional structure. J. Mol. Liq. 122, 95–103 (2005)

    Article  CAS  Google Scholar 

  5. Roy, S., Mahali, K., Dolui, B.K.: Thermodynamics of solvation of a series of homologous α-amino acids in aqueous mixtures of 1,2-dimethoxyethane. J. Solution Chem. 42, 1472–1487 (2013)

    Article  CAS  Google Scholar 

  6. Nozaki, Y., Tanford, C.: The solubilities of amino acids and related compounds in aqueous urea solutions. J. Biol. Chem. 238, 4074–4081 (1963)

    CAS  Google Scholar 

  7. Talukdar, H., Rudra, S.P., Kundu, K.K.: Thermodynamics of transfer of glycine, diglycine and triglycine from water to aqueous solutions of urea, glycerol, and sodium nitrate. Can. J. Chem. 66, 461–468 (1988)

    Article  CAS  Google Scholar 

  8. Mahali, K., Roy, S., Dolui, B.K.: Thermodynamic solvation of a series of homologous α-amino acids in non-aqueous mixture of ethylene-glycol and N, N-dimethyl formamide. J. Biophys. Chem. 2, 185–193 (2011)

    Article  CAS  Google Scholar 

  9. Roy, S., Mahali, K., Mondal, S., Dolui, B.K.: Thermodynamics of dl-alanine solvation in water–dimethylsulfoxide mixtures at 298.15 K. Russ. J. Phys. Chem. A 89, 654–662 (2015)

    Article  CAS  Google Scholar 

  10. Roy, S., Mahali, K., Dolui, B.K.: Chemical transfer energetic of a series of homologous α-amino acids in quasi-aprotic 2-methoxyethanol–water mixture. J. Solution Chem. 45, 574–590 (2016)

    Article  CAS  Google Scholar 

  11. Mahali, K., Roy, S., Dolui, B.K.: Solubility and solvation thermodynamics of a series of homologous α-amino acids in non-aqueous binary mixtures of ethylene glycol and dimethylsulfoxide. J. Chem. Eng. Data 60, 1233–1241 (2015)

    Article  CAS  Google Scholar 

  12. Roy, S., Mahali, K., Dolui, B.K.: Transfer entropies of solvation of a series of homologous α-amino acids in aqueous mixtures of protic ethylene glycol. Biochem. Indian J. 4, 71–76 (2010)

    CAS  Google Scholar 

  13. Ferreira, L.A., Macedo, E.A., Pinho, S.P.: Effect of KCl and Na2SO4 on the solubility of glycine and dl-alanine in water at 298.15 K. Indian Eng. Chem. Res. 44, 8892–8898 (2005)

    Article  CAS  Google Scholar 

  14. Khoshkbarchi, M.K., Vera, J.H.: Effect of NaCl and KCl on the solubility of amino acids in aqueous solutions at 298.2 K: measurements and modelling. Ind. Eng. Chem. Res. 36, 2445–2451 (1997)

    Article  CAS  Google Scholar 

  15. Soto, A., Arce, A., Khoshkbarchi, M.K., Vera, J.H.: Effect of the cation and the anion of an electrolyte on the solubility of dl-aminobutyric acid in aqueous solutions: measurement and modelling. Biophys. Chem. 73, 77–83 (1998)

    Article  CAS  Google Scholar 

  16. Lu, J., Wang, X.-J., Yang, X., Ching, C.-B.: Solubilities of glycine and its oligopeptides in aqueous solutions. J. Chem. Eng. Data 51, 1593–1596 (2006)

    Article  CAS  Google Scholar 

  17. Pradhan, A.A., Vera, J.H.: Effect of anions on the solubility of zwitterionic amino acids. J. Chem. Eng. Data 45, 140–143 (2000)

    Article  CAS  Google Scholar 

  18. Ramasami, P.: Solubilities of amino acids in water and aqueous sodium sulfate and related apparent transfer properties. J. Chem. Eng. Data 47, 1164–1166 (2002)

    Article  CAS  Google Scholar 

  19. Held, C., Reschke, T., Müller, R., Kunz, W., Sadowski, G.: Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT. J. Chem. Thermodyn. 68, 1–12 (2014)

    Article  CAS  Google Scholar 

  20. Daldrup Grosse, J.-B., Held, C., Sadowski, G., Schembecker, G.: Modeling pH and solubilities in aqueous multisolute amino acid solutions. Ind. Eng. Chem. Res. 50, 3503–3509 (2011)

    Article  Google Scholar 

  21. Daldrup Grosse, J.-B., Held, C., Ruether, F., Schembecker, G., Sadowski, G.: Measurement and modeling solubility of aqueous multisolute amino-acid solutions. Ind. Eng. Chem. Res. 49, 1395–1401 (2010)

    Article  Google Scholar 

  22. Held, C., Cameretti, L.F., Sadowski, G.: Measuring and modeling activity coefficients in aqueous amino-acid solutions. Ind. Eng. Chem. Res. 50, 131–141 (2011)

    Article  CAS  Google Scholar 

  23. Pradhan, A.A., Vera, J.H.: Effect of acids and bases on the solubility of amino acids. Fluid Ph. Equilib. 152, 121–132 (1998)

    Article  CAS  Google Scholar 

  24. Kamali-Ardakani, M., Modarress, H., Taghikhani, V., Khoshkbarchi, M.K.: Activity coefficients of glycine in aqueous electrolyte solutions: experimental data for (H2O + KCl + glycine) at 298.15 K and (H2O + NaCl + glycine) at 308.15 K. J. Chem. Thermodyn. 33, 821–836 (2001)

    Article  CAS  Google Scholar 

  25. Tomé, L.I.N., Pinho, S.P., Jorge, M., Gomes, J.R.B., Coutinho, J.A.P.: Salting-in with a salting-out agent: Explaining the cation specific effects on the aqueous solubility of amino acids. J. Phys. Chem. B 117, 6116–6128 (2013)

    Article  Google Scholar 

  26. Ferreira, L.A., Macedo, E.A., Pinho, S.P.: KCl effect on the solubility of five different amino acids in water. Fluid Ph. Equilib. 255, 131–137 (2007)

    Article  CAS  Google Scholar 

  27. Roy, S., Guin, P.S., Dolui, B.K.: Solubility and solvation thermodynamics of dl-nor-valine in aqueous solutions of NaCl and KCl. J. Mol. Liq. 211, 294–300 (2015)

    Article  CAS  Google Scholar 

  28. Roy, S., Mahali, K., Dolui, B.K.: Comparaive study on solubility of glycine, dl-alanine, dl-nor-valine and dl-serine in aqueous solution of NaF and KF at 298.15 K. J. Mol. Liq. 219, 815–819 (2016)

    Article  CAS  Google Scholar 

  29. Anfinsen, C.B., Seheraga, H.A.: Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205–300 (1978)

    Article  Google Scholar 

  30. Reading, J.F., Watson, I.D., Gavin, R.H.: Thermodynamic properties of peptide solutions partial molar volumes of glycylglycine, glycyl-dl-leucine, and glycyl-dl-serine at 308.15 and 318.15 K. J. Chem. Thermodyn. 22, 159–165 (1990)

    Article  CAS  Google Scholar 

  31. Kuramochi, H., Noritomi, H., Hoshino, D., Nagahama, K.: Representation of activity coefficients of fundamental biochemicals in water by the UNIFAC model. Fluid Ph. Equilib. 130, 117–132 (1997)

    Article  CAS  Google Scholar 

  32. Khoshkbarchi, M.K., Vera, J.H.: A theoretically improved perturbation model for activity coefficients of amino acids and peptides in aqueous solutions. Ind. Eng. Chem. Res. 37, 3052–3057 (1998)

    Article  CAS  Google Scholar 

  33. Mortazavi-Manesh, S., Ghotbi, C., Taghikhani, V.: A new model for predicting activity coefficients in aqueous solutions of amino acids and peptides. J. Chem. Thermodyn. 35, 101–112 (2003)

    Article  CAS  Google Scholar 

  34. Liu, J.-C., Lu, J.-F., Li, Y.-G.: Study on the activity coefficients and solubilities of amino acids in water by the perturbation theory. Fluid Ph. Equilib. 142, 67–82 (1998)

    Article  CAS  Google Scholar 

  35. Hossain, A., Roy, S., Ghosh, S., Mondal, S., Dolui, B.K.: Solubility of dl-serine and dl-phenylalanine in aqueous mixtures of dimethyl sulfoxide and solvation thermodynamics. RSC Adv. 5, 69839–69847 (2015)

    Article  CAS  Google Scholar 

  36. Roy, S., Hossain, A., Dolui, B.K.: Solubility and chemical thermodynamics of d, l-alanine and d, l-serine in aqueous NaCl and KCl solutions. J. Chem. Eng. Data 61, 132–141 (2016)

    Article  CAS  Google Scholar 

  37. Bhattacharyya, A., Bhattacharya, S.K.: Chemical transfer energies of some homologous amino acids and the –CH2– group in aqueous DMF: solvent effect on hydrophobic hydration and three dimensional solvent structures. J. Solution Chem. 42, 2149–2167 (2013)

    Article  CAS  Google Scholar 

  38. Marcus, Y.: Ion Solvation. Wiley, Chicester (1985)

    Google Scholar 

  39. El-Dossoki, F.I.: Effect of the charge and the nature of both cations and anions on the solubility of zwitterionic amino acids, measurements and modeling. J. Solution Chem. 39, 1311–1326 (2010)

    Article  CAS  Google Scholar 

  40. Dalton, J.B., Schmidt, C.L.A.: The solubilities of certain amino acids in water, the densities of their solutions at 25 °C, and the calculated heats of solution and partial molal volumes. J. Biol. Chem. 103, 549–578 (1933)

    CAS  Google Scholar 

  41. Yang, Z.: Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J. Biotech. 144, 12–22 (2009)

    Article  CAS  Google Scholar 

  42. Wincel, H.: Hydration of potassiated amino acids in the gas phase. J. Am. Soc. Mass Spectrom. 18, 2083–2089 (2007)

    Article  CAS  Google Scholar 

  43. Lide, D.R.: CRC Handbook of Chemistry and Physics, 85th edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  44. Clarke, J.H.R.: Raman spectra of lattice vibrations in liquid and solid monovalent metal nitrates. Chem Phys. Lett. 4, 39–42 (1969)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very much thankful to the Department of Chemistry, Visva-Bharati University, and Shibpur Dinobundhoo Institution (College) for providing financial assistance and computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay Roy or Bijoy Krishna Dolui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Roy, S., Ghosh, S. et al. Study of the Solubility and Transfer Thermodynamics of d,l-Phenylalanine in Aqueous Sodium Chloride and d,l-Serine in Aqueous Sodium Nitrate Solutions. J Solution Chem 45, 1755–1772 (2016). https://doi.org/10.1007/s10953-016-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0527-1

Keywords

Navigation