Skip to main content
Log in

High-Energy X-ray Diffraction and MD Simulation Study on the Ion-Ion Interactions in 1-Ethyl-3-methylimidazolium Bis(fluorosulfonyl)amide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ion-ion interactions or liquid structures in low-viscosity ionic liquid, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide, [C2mIm+][FSA] were investigated by high-energy X-ray diffraction (HEXRD) experiments and molecular dynamics (MD) simulations. Experimental X-ray structure factor, S exp(q) obtained from the HEXRD was successfully deconvoluted into the intra- and the intermolecular components, S expintra (q) and S expinter (q), respectively, by taking into account the population of cis and trans conformers of the FSA anion to give the corresponding radial distribution functions, G expintra (r) and G expinter (r), respectively. The G expinter (r) exhibits the peaks at 3.5, 4.6 and 5.4 Å, which is well represented by theoretical radial distribution function, G MDinter (r) obtained from MD simulations. From the space distribution function, SDF calculated by MD simulations, it was found that static structure (distance and orientation) of the nearest neighbor intermolecular interaction between cation and anion in [C2mIm+][FSA] is similar to its analogous ionic liquid, [C2mIm+][TFSA] where TFSA is bis(trifluoromethanesulfonyl)amide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verevkin, S.P., Zaitsau, D.H., Emel’yanenko, V.N., Yermalayeu, A.V.: Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data. J. Phys. Chem. B 117, 6473–6486 (2013)

    Article  CAS  Google Scholar 

  2. Santos, L.M.N.B.F., Lopes, J.N.A.C., Coutinho, J.A.P., Esperança, J.M.S.S., Gomes, L.R., Marrucho, I.M., Rebelo, L.P.N.: Ionic liquids: first direct determination of their cohesive energy. J. Am. Chem. Soc. 129, 284–285 (2007)

    Article  CAS  Google Scholar 

  3. Köddermann, T., Paschek, D., Ludwig, R.: Ionic liquids: dissecting the enthalpies of vaporization. ChemPhysChem 9, 549–555 (2008)

    Article  Google Scholar 

  4. Katayanagi, H., Nishikawa, K., Shimozaki, H., Miki, K., Westh, P., Koga, Y.: Mixing schemes in ionic liquid-H2O systems: a thermodynamic study. J. Phys. Chem. B 108, 19451–19457 (2004)

    Article  CAS  Google Scholar 

  5. Shirota, H., Funston, A.M., Wishart, J.F., Castner Jr, E.W.: Ultrafast dynamics of pyrrolidinium cation ionic liquids. J. Chem. Phys. 122, 184512 (2005)

    Article  Google Scholar 

  6. Shirota, H., Castner Jr, E.W.: Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. J. Phys. Chem. A 109, 9388–9392 (2005)

    Article  CAS  Google Scholar 

  7. Russina, O., Triolo, A., Gontrani, L., Caminiti, R., Xiao, D., Hines Jr, L.G., Bartsch, R.A., Quitevis, E.L., Plechkova, N.V., Seddon, K.R.: Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J. Phys. Condens. Matter. 21, 424121–424129 (2009)

    Article  Google Scholar 

  8. Turton, D.A., Sonnleitner, T., Ortner, A., Walther, M., Hefter, G., Seddon, K.R., Stana, S., Plechkova, N.V., Buchner, R., Wynne, K.: Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study. Faraday Discuss. 154, 145–153 (2012)

    Article  CAS  Google Scholar 

  9. Turton, D.A., Hunger, J., Stoppa, A., Hefter, G., Thoman, A., Walther, M., Buchner, R., Wynne, K.: Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical kerr effect study: evidence for mesoscopic aggregation. J. Am. Chem. Soc. 131, 11140–11146 (2009)

    Article  CAS  Google Scholar 

  10. Umebayashi, Y., Fujimori, T., Sukizaki, T., Asada, M., Fujii, K., Kanzaki, R., Ishiguro, S.: Evidence of conformation equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical caluclations. J. Phys. Chem. A 109, 8976–8992 (2005)

    Article  CAS  Google Scholar 

  11. Fujii, K., Kanzaki, R., Takamuku, T., Fujimori, T., Umebayashi, Y., Ishiguro, S.: Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid—Raman spectroscopic study and DFT calculations. J. Phys. Chem. B 110, 8179–8183 (2006)

    Article  CAS  Google Scholar 

  12. Fujii, K., Seki, S., Fukuda, S., Kanzaki, R., Takamuku, T., Umebayashi, Y., Ishiguro, S.: Anion conformation of low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. J. Phys. Chem. B 111, 12829–12833 (2007)

    Article  CAS  Google Scholar 

  13. Umebayashi, Y., Tsuzuki, S., Fujii, K., Mori, S., Seki, S., Hayamizu, K., Ishiguro, S.: Raman spectroscopic studies and ab initio calculations on conformational isomerism of tfsa solvated to a lithium ion in ionic liquis: effects of the second solvation sphere of the lithium ion. J. Phys. Chem. B 114, 6513–6521 (2010)

    Article  CAS  Google Scholar 

  14. Paulechka, Y.U., Kabo, G.J., Blokhin, A.V., Shaplov, A.S., Lozinskaya, E.I., Golovanov, D.G., Lyssenko, K.A., Korlyukov, A.A., Vygodskii, Y.S.: IR and X-ray study of polymorphism in 1-alkyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imides. J. Phys. Chem. B 113, 9538–9546 (2009)

    Article  CAS  Google Scholar 

  15. Castner Jr, E.W., Wishart, J.F., Shirota, H.: Intermolecular dynamics, interactions, and solvation in ionic liquids. Acc. Chem. Res. 40, 1217–1227 (2007)

    Article  CAS  Google Scholar 

  16. Hayamizu, K., Tsuzuki, S., Seki, S.: Molecular motions and ion diffusions of the room-temperature ionic liquid 1, 2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)amide (DMPImTFSA) studied by H-1, C-13, and F-19 NMR. J. Phys. Chem. A 112, 12027–12036 (2008)

    Article  CAS  Google Scholar 

  17. Tsuzuki, S., Hayamizu, K., Seki, S.: Origin of the low-viscosity of [emim][(FSO2)2 N] ionic liquid and its lithium salt mixture: experimental and theoretical study of self-diffusion coefficients, conductivities, and intermolecular interactions. J. Phys. Chem. B 114, 16329–16336 (2010)

    Article  CAS  Google Scholar 

  18. Hayamizu, K., Tsuzuki, S., Seki, S., Fujii, K., Suenaga, M., Umebayashi, Y.: Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)-amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 133, 194505 (2010)

    Article  Google Scholar 

  19. Tokuda, H., Hayamizu, K., Ishii, K., Abu Bin Hasan Susan, M., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  20. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103 (2005)

    Article  CAS  Google Scholar 

  21. Lee, H.Y., Shirota, H., Castner Jr, E.W.: Differences in ion interactions for isoelectronic ionic liquid homologs. J. Phys. Chem. Lett. 4, 1477–1483 (2013)

    Article  CAS  Google Scholar 

  22. Triolo, A., Russina, O., Bluif, H.-J., Cola, E.D.: Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B 111, 4641–4644 (2007)

    Article  CAS  Google Scholar 

  23. Katayanagi, H., Hayashi, S., Hamaguchi, H., Nishikawa, K.: Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem. Phys. Lett. 392, 460–464 (2004)

    Article  CAS  Google Scholar 

  24. Santos, C.S., Murthy, N.S., Baker, G.A., Castner, E.W.: X-ray scattering from ionic liquids with pyrrolidinium cations. J. Chem. Phys. 134, 121101 (2011)

    Article  Google Scholar 

  25. Hardacre, C., Holbrey, J.D., Mullan, C.L., Youngs, T.G.A., Bowron, D.T.: Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([Cnmim][PF6], n = 4, 6, and 8). J. Chem. Phys. 133, 074510 (2010)

    Article  Google Scholar 

  26. Santos, C.S., Annapureddy, H.V.R., Murthy, N.S., Kashyap, H.K., Castner Jr, E.W., Margulis, C.J.: Temperature-dependent structure of methyltributylammonium bis(trifluoromethylsulfonyl)amide: X ray scattering and simulations. J. Chem. Phys. 134, 064501 (2011)

    Article  Google Scholar 

  27. Annapureddy, H.V.R., Kashyap, H.K., De Biase, P.M., Margulis, C.J.: What is the origin of the prepeak in the X-ray scattering of imidazolium-based room-temperature ionic liquids? J. Phys. Chem. B 114, 16838–16846 (2010)

    Article  CAS  Google Scholar 

  28. Kofu, M., Nagao, M., Ueki, T., Kitazawa, Y., Nakamura, Y., Sawamura, S., Watanabe, M., Yamamuro, O.: Heterogeneous slow dynamics of imidazolium based ionic liquids studied by neutron spin echo. J. Phys. Chem. B 117, 2773–2781 (2013)

    Article  CAS  Google Scholar 

  29. Yamamuro, O., Yamada, T., Kofu, M., Nakakoshi, M., Nagao, M.: Hierarchical structure and dynamics of an ionic liquid 1-octyl-3-methylimidazolium chloride. J. Chem. Phys. 135, 054508 (2011)

    Article  Google Scholar 

  30. Fujii, K., Shibayama, M., Yamaguchi, T., Yoshida, K., Seki, S., Uchiyama, H., Baron, A.Q., Umebayashi, Y.: Collective dynamics of room-temperature ionic liquids and their Li ion solutions studied by high-resolution inelastic X-ray scattering. J. Chem. Phys. 138, 151101 (2013)

    Article  Google Scholar 

  31. Atkin, R., Warr, G.G.: The smallest amphiphiles: nanostructure in protic room-temperature ionic liquids with short alkyl groups. J. Phys. Chem. B 112, 4164–4166 (2008)

    Article  CAS  Google Scholar 

  32. Tsuzuki, S., Tokuda, H., Mikami, M.: Theoretical analysis of the hydrogen bond of imidazolium C2–H with anions. Phys. Chem. Chem. Phys. 9, 4780–4784 (2007)

    Article  CAS  Google Scholar 

  33. Dong, K., Zhang, S., Wang, D., Yao, X.: Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A 110, 9775–9782 (2006)

    Article  CAS  Google Scholar 

  34. Lopes, J.N.C., Shimizu, K., Pádua, A.A.H., Umebayashi, Y., Fukuda, S., Fujii, K., Ishiguro, S.: Potential Energy Landscape of Bis(fluorosulfonyl)amide. J. Phys. Chem. B 112, 9449–9455 (2008)

    Article  Google Scholar 

  35. Tsuzuki, S., Tokuda, H., Hayamizu, K., Watanabe, M.: Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J. Phys. Chem. B 109, 16474–16481 (2005)

    Article  CAS  Google Scholar 

  36. Katsyuba, S.A., Zvereva, E.E., Vidiš, A., Dyson, P.J.: Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J. Phys. Chem. A 111, 352–370 (2007)

    Article  CAS  Google Scholar 

  37. Logotheti, G.E., Ramos, J., Economou, I.G.: Molecular modeling of imidazolium-based [Tf2 N-] ionic liquids: microscopic structure, thermodynamic and dynamic properties, and segmental dynamics. J. Phys. Chem. B 113, 7211–7224 (2009)

    Article  CAS  Google Scholar 

  38. Kashyap, H.K., Santos, C.S., Daly, R.P., Hettige, J.J., Murthy, N.S., Shirota, H., Castner Jr, E.W., Margulis, C.J.: How does the ionic liquid organizational landscape change when nonpolar cationic alkyl groups are replaced by polar isoelectronic diethers? J. Phys. Chem. B 117, 1130–1135 (2013)

    Article  CAS  Google Scholar 

  39. Bodo, E., Gontrani, L., Caminiti, R., Plechkova, N.V., Seddon, K.R., Triolo, A.: Structural properties of 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amideionic liquids: X-ray diffraction data and molecular dynamics simulations. J. Phys. Chem. B 114, 16398–16407 (2010)

    Article  CAS  Google Scholar 

  40. Gontrani, L., Bodo, E., Triolo, A., Leonelli, F., D’Angelo, P., Migliorati, V., Caminiti, R.: The interpretation of diffraction patterns of two prototypical protic ionic liquids: a challenging task for classical molecular dynamics simulations. J. Phys. Chem. B 116, 13024–13032 (2012)

    Article  CAS  Google Scholar 

  41. Kashyap, H.K., Hettige, J.J., Annapureddy, H.V.R., Margulis, C.J.: SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem. Commun. 48, 5103–5105 (2012)

    Article  CAS  Google Scholar 

  42. Fujii, K., Soejima, Y., Kyoshoin, Y., Fukuda, S., Kanzaki, R., Umebayashi, Y., Yamaguchi, T., Ishiguro, S., Takamuku, T.: Liquid structure of room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide. J. Phys. Chem. B 112, 4329–4336 (2008)

    Article  CAS  Google Scholar 

  43. Fujii, K., Mitsugi, T., Takamuku, T., Yamaguchi, T., Umebayashi, Y., Ishiguro, S.: Effect of methylation at the C2 position on the liquid structure of ionic liquids revealed by large-angle X-ray scattering experiments and MD simulations. Chem. Lett. 38, 340–341 (2009)

    Article  CAS  Google Scholar 

  44. Kanzaki, R., Mitsugi, T., Fukuda, S., Fujii, K., Takeuchi, M., Soejima, Y., Takamuku, T., Yamaguchi, T., Umebayashi, Y., Ishiguro, S.: Ion-ion interaction in room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate studied by large-angle X-ray scattering experiment and molecular dynamics simulations. J. Mol. Liq. 147, 77–82 (2009)

    Article  CAS  Google Scholar 

  45. Fujii, K., Kanzaki, R., Takamuku, T., Kameda, Y., Kohara, S., Kanakubo, M., Shibayama, M., Ishiguro, S., Umebayashi, Y.: Experimental evidences for molecular origin of low-Q peak in neutron/X-ray scattering of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids. J. Chem. Phys. 135, 244502 (2011)

    Article  Google Scholar 

  46. Fukuda, S., Takeuchi, M., Fujii, K., Kanzaki, R., Takamuku, T., Chiba, K., Yamamoto, H., Umebayashi, Y., Ishiguro, S.: Liquid structure of N-methyl-N-pyrrolidinium bis-(trifluoromethanesulfonyl) amide ionic liquid studied by large angle X-ray scattering and molecular dynamics simulations. J. Mol. Liq. 143, 2–7 (2008)

    Article  CAS  Google Scholar 

  47. Fujii, K., Seki, S., Fukuda, S., Takamuku, T., Kohara, S., Kameda, Y., Umebayashi, Y., Ishiguro, S.: Liquid structure and conformation of a low-viscosity ionic liquid, N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl) imide studied by high-energy X-ray scattering. J. Mol. Liq. 143, 64–69 (2008)

    Article  CAS  Google Scholar 

  48. Umebayashi, Y., Chung, W.-L., Mitsugi, T., Fukuda, S., Takeuchi, M., Fujii, K., Takamuku, T., Kanzaki, R., Ishiguro, S.: Liquid structure and the ion-ion interaction of ethylammonium nitrate ionic liquid studied by large angle X-ray scattering and molecular dynamics simulations. J. Comput. Chem. Jpn. 7, 125–134 (2008)

    Article  CAS  Google Scholar 

  49. Song, X., Hamano, H., Minofar, B., Kanzaki, R., Fujii, K., Kameda, Y., Kohara, S., Watanabe, M., Ishiguro, S., Umebayashi, Y.: Structural heterogeneity and unique distorted hydrogen bonding in primary ammonium nitrate ionic liquids studied by high-energy X-ray diffraction experiments and MD simulations. J. Phys. Chem. B 116, 2801–2813 (2012)

    Article  CAS  Google Scholar 

  50. Hardacre, C., McMath, S.E.J., Nieuwenhuyzen, M., Boeron, D.T., Soper, A.K.: Liquid structure of 1,3-dimethylimidazolium salts. J. Phys.: Condens. Matter. 15, S159–S166 (2003)

    CAS  Google Scholar 

  51. Deetlefs, M., Hardacre, C., Nieuwenhuyzen, M., Pádua, A.A.H., Sheppard, O., Soper, A.K.: Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}amide. J. Phys. Chem. B 110, 12055–12061 (2006)

    Article  CAS  Google Scholar 

  52. Umebayashi, Y., Hamano, H., Seki, S., Minofar, B., Fujii, K., Hayamizu, K., Tsuzuki, S., Kameda, Y., Kohara, S., Watanabe, M.: Liquid structure of and Li + ion solvation in bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium cations. J. Phys. Chem. B 115, 12179–12191 (2011)

    Article  CAS  Google Scholar 

  53. Fujii, K., Hamano, H., Doi, H., Song, X., Tsuzuki, S., Hayamizu, H., Seki, S., Kameda, Y., Dokko, K., Watanabe, M., Umebayashi, Y.: Unusual Li + ion solvation structure in bis(fluorosulnonyl)amide based ionic liquid. J. Phys. Chem. C 117, 19314–19324 (2013)

    Article  CAS  Google Scholar 

  54. Matsugami, M., Fujii, K., Ueki, T., Kitazawa, Y., Umebayashi, Y., Watanabe, M., Shibayama, M.: Specific solvation of benzyl methacrylate in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquid. Anal. Sci. 29, 311–314 (2013)

    Article  CAS  Google Scholar 

  55. Asai, H., Fujii, K., Nishi, K., Sakai, T., Ohara, K., Umebayashi, Y., Shibayama, M.: Solvation structure of poly(ethylene glycol) in ionic liquids studied by high-energy X-ray diffraction and molecular dynamics simulations. Macromolecules 46, 2369–2375 (2013)

    Article  CAS  Google Scholar 

  56. Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., Kono, M.: Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI](-). J. Power Sources 160, 1308–1313 (2006)

    Article  CAS  Google Scholar 

  57. Ishikawa, M., Sugimoto, T., Kikuta, M., Ishiko, E., Kono, M.: Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources 162, 658–662 (2006)

    Article  CAS  Google Scholar 

  58. Tsunashima, K., Sugiya, M.: Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun. 9, 2353–2358 (2007)

    Article  CAS  Google Scholar 

  59. Seki, S., Hayamizu, K., Tsuzuki, S., Fujii, K., Umebayashi, Y., Mitsugi, T., Kobayashi, T., Ohno, Y., Kobayashi, Y., Mita, Y., Miyashiro, H., Ishiguro, S.: Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Phys. Chem. Chem. Phys. 11, 3509–3514 (2009)

    Article  CAS  Google Scholar 

  60. Fujii, K., Ishiguro, S., Umebayashi, Y.: Trends in ionic liquid electrochemistry research. vibration spectroscopic study of room-temperature ionic liquids. Conformational isomerism and metal ion solvation. Nova Science Publishers, Inc., USA, (2010)

  61. Kohara, S., Suzuya, K., Kashihara, Y., Matsumoto, N., Umesaki, N., Sakai, I.: Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment. Nucl. Instrum. Methods A 467468, 1030–1033 (2001)

    Article  Google Scholar 

  62. Isshiki, M., Ohishi, Y., Goto, S., Takeshita, K., Oshikawa, T.: High-energy X-ray diffraction beamline: BL04B2 at SPring-8. Nucl. Instrum. Methods A 467468, 663–666 (2001)

    Article  Google Scholar 

  63. Sasaki, S.: KEK Report, vol. 90–16. National Laboratory for High Energy Physics (1991)

  64. Cromer, D.T.: Compton scattering factors for aspherical free atoms. J. Chem. Phys. 50, 4857 (1969)

    Article  CAS  Google Scholar 

  65. Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T., Howerton, R.J.: Atomic form factor and incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471–493 (1975)

  66. Cromer, D.T., Mann, J.B.: Compton scattering factors for spherically symmetric free atoms. J. Chem. Phys. 47, 1892–1893 (1967)

  67. Maslen, E.N., Fox, A.G., O’Keefe, M.A.: International Tables for Crystallography, vol. C, p. 572. Kluwer, Dordrecht (1999)

    Google Scholar 

  68. Lopes, J.N.A.C., Pádua, A.A.H.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108, 2038–2047 (2004)

    Article  CAS  Google Scholar 

  69. Lopes, J.N.A.C., Pádua, A.A.H.: Molecular force field for ionic liquids III: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 110, 19586–19592 (2006)

    Article  Google Scholar 

  70. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  CAS  Google Scholar 

  71. Umebayashi, Y., Hamano, H., Tsuzuki, S., Lopes, J.N.A.C., Pádua, A.A.H., Kameda, Y., Kohara, S., Yamaguchi, T., Fujii, K., Ishiguro, S.: Dependence of the conformational isomerism in 1-n-butyl-3-methylimidazolium ionic liquids on the nature of the halide anion. J. Phys. Chem. B 114, 11715–11724 (2010)

    Article  CAS  Google Scholar 

  72. Beran, M., Příhoda, J., Žák, Z., Černík, M.: A new route to the syntheses of alkali metal bis (fluorosulfuryl) imides: crystal structure of LiN (SO2F)2. Polyhedron 25, 1292–1298 (2006)

    Article  CAS  Google Scholar 

  73. Hiemisch, O., Henschel, D., Jones, P.G., Blaschette, A.: Polysulfonylamine. LXXII [1]. Triphenylcarbenium-und Triphenylphosphonium-di (fluorsulfonyl) amid: Zwei Kristallstrukturen mit geordneten (FSO2) 2N⊖-Lagen. Z. Anorg. Allg. Chem. 622, 829–836 (1996)

    Article  CAS  Google Scholar 

  74. Matsumoto, K., Tsuda, T., Hagiwara, R., Ito, Y., Tamada, O.: Structural characteristics of 1-ethyl-3-methylimidazolium bifluoride: HF-deficient form of a highly conductive room temperature molten salt. Solid State Sci. 4, 23–26 (2002)

    Article  CAS  Google Scholar 

  75. Choudhury, A.R., Winterton, N., Steiner, A., Cooper, A.I., Johnson, K.A.: In situ crystallization of ionic liquids with melting points below −25 °C. CrystEngComm 8, 742–745 (2006)

    Article  CAS  Google Scholar 

  76. Yamaguchi, T., Hirata, F.: Site–site mode-coupling theory for the shear viscosity of molecular liquids. J. Chem. Phys. 115, 9340 (2001)

    Article  CAS  Google Scholar 

  77. Yamaguchi, T., Mikawa, K., Koda, S., Fujii, F., Endo, H., Shibayama, M., Hamano, H., Umebayashi, Y.: Relationship between mesoscale dynamics and shear relaxation of ionic liquids with long alkyl chain. J. Chem. Phys. 137, 104511 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (No. 24750066 to KF, No. 23350033 and No. 24655142 to YU). Advanced Low Carbon Technology Research and Development Program (ALCA) from the Japan Science and Technology Agency (JST). The synchrotron radiation experiment was performed at the BL04B2 beam line (SPring-8) with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2010A1527 and No. 2012A1669).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenta Fujii or Yasuhiro Umebayashi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10953_2014_234_MOESM1_ESM.doc

The radial distribution function and SDF for [C2mIm+][TFSA] system are shown in Figure S1 and S2, respectively(DOC 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, K., Seki, S., Ohara, K. et al. High-Energy X-ray Diffraction and MD Simulation Study on the Ion-Ion Interactions in 1-Ethyl-3-methylimidazolium Bis(fluorosulfonyl)amide. J Solution Chem 43, 1655–1668 (2014). https://doi.org/10.1007/s10953-014-0234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0234-8

Keywords

Navigation