Skip to main content
Log in

Investigation of Micellar and Phase Separation Phenomenon of the Amphiphilic Drug Amitriptyline Hydrochloride with Cationic Hydrotropes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Micellization and phase separation of the amphiphilic drug amitriptyline hydrochloride (AMT) in the absence and presence of cationic hydrotropes (aniline hydrochloride, para-toluidine hydrochloride, and ortho-toluidine hydrochloride) have been investigated in the present study. The experimental critical micelle concentration (cmc) values are lower than cmc id values (cmc id is the cmc value at ideal mixing state), indicating attractive interactions between the two components (drug and hydrotrope) in mixed micelles. The bulk behaviors were investigated using the different theoretical models of Clint, Rubingh, Motomura, and Rodenas for comparison of the results of different binary combinations of the drug and hydrotropes. Synergistic interactions were confirmed in all binary combinations at all temperatures, which increase with increasing concentration of hydrotropes. Activity coefficients (f 1 and f 2) were found to be consistently less than unity indicating nonideality in the systems. At a fixed drug concentration (50 mmol·dm−3) and pH (6.7), the hydrotropes showed a continuous increase in the cloud point. Thermodynamic parameters were also evaluated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dawey, T.W., Ducker, W.A., Hayman, A.R.: Aggregation of ω-hydroxy quaternary ammonium bolaform surfactants. Langmuir 16, 2430–2435 (2000)

    Article  Google Scholar 

  2. Presto, W.C., Preston, W.: Some correlating principles of detergent action. J. Phys. Chem. 52, 84–97 (1948)

    Article  Google Scholar 

  3. Balasubramanian, D., Srinivas, V., Gaikar, V.G., Sharma, M.M.: Aggregation behavior of hydrotropic compounds in aqueous solution. J. Phys. Chem. 93, 3865–3870 (1989)

    Article  CAS  Google Scholar 

  4. Neuberg, C.: Hydrotropy. Biochem. Z. 76, 107–176 (1916)

    CAS  Google Scholar 

  5. Balasubramanian, D., Friberg, S.E. In: Matijevic, E. (ed.) Surface and Colloid Science. Plenum Press, New York (1993)

  6. Srivastava, R.C., Nagappa, A.N.: Surface Activity in Drug Action, vol. 21. Amsterdam, The Netherlands (2005)

    Google Scholar 

  7. Kumar, S., Sharma, D., Kabir-ud-Din: Cloud point phenomenon in anionic surfactant + quaternary bromide systems and its variation with additives. Langmuir 16, 6821–6824 (2000)

    Article  CAS  Google Scholar 

  8. Kumar, S., Sharma, D., Khan, Z.A., Kabir-ud-Din: Salt-induced cloud point in anionic surfactant solutions: role of the headgroup and additives. Langmuir 18, 4205–4209 (2002)

    Article  CAS  Google Scholar 

  9. Kumar, S., Sharma, D., Kabir-ud-Din: Temperature-[salt] compensation for clouding in ionic micellar systems containing sodium dodecyl sulfate and symmetrical quaternary bromides. Langmuir 19, 3539–3541 (2003)

    Article  CAS  Google Scholar 

  10. Alam, Md.S., Naqvi, A.Z., Kabir-ud-Din: Influence of organic additives on the clouding phenomena of promethazine hydrochloride solutions. Colloid Polym. Sci. 285, 1573–1579 (2007)

    Article  CAS  Google Scholar 

  11. Kabir-ud-Din, Rub, M.A., Sheikh, M.S.: Cloud-point modulation of an amphiphilic drug with pharmaceutical excipients. J. Chem. Eng. Data 55, 5642–5652 (2010)

    Article  CAS  Google Scholar 

  12. Naqvi, A.Z., Rub, M.A., Kabir-ud-Din: Effects of pharmaceutical excipients on cloud points of amphiphilic drugs. J. Colloid Interface Sci. 361, 42–48 (2011)

    Article  CAS  Google Scholar 

  13. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Electrolytes and polymers affect the clouding behavior of phenothiazine drug promethazine hydrochloride solution. J. Chem. Eng. Data 56, 3115–3121 (2011)

    Article  CAS  Google Scholar 

  14. Guo, R., Zhang, Q., Qian, J., Zou, A.: Hydrotrope and hydrotrope-solubilization action of penicillin-K in CTAB/n-C5H11OH/H2O system. Colloids Surf. A 196, 223–234 (2002)

    Article  CAS  Google Scholar 

  15. Attwood, D., Florence, A.T.: Surfactant Systems. Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York (1983)

  16. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and gemini) at 293.15–308.15 K. J. Phys. Chem. B 114, 6354–6364 (2010)

    Article  CAS  Google Scholar 

  17. Khan, Z.A., Kamil, M., Sulaiman, O., Hashim, R., Ibrahim, M.N.M., Khanam, A.J., Kabir-ud-Din: Mixing behavior of cationic hydrotopes with anionic surfactant sodium dodecyl sulfate. J. Dispersion. Sci. Technol. 32, 1452–1458 (2011)

    Google Scholar 

  18. Mukerjee, P.: Solubilization in aqueous micellar systems In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants, vol. 1. Plenum Press, New York (1979)

  19. Rosen, M.J.: Surfactants and Interfacial Phenomena. John Wiley, New York (2004)

    Book  Google Scholar 

  20. Schick, M.J. (ed.): Nonionic Surfactants: Physical Chemistry. Marcel Dekker, New York (1987)

    Google Scholar 

  21. Mosquera, V., del Rio, J.M., Attwood, D., Garcia, M., Jones, M.N., Prieto, G., Suarez, M.J., Sarmiento, F.: A study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution. J. Colloid Interface Sci. 206, 66–76 (1998)

    Article  CAS  Google Scholar 

  22. Chen, L., Shi-Yow, L., Chiung-Chang, H., En-Ming, C.: Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf. A 135, 175–181 (1998)

    Article  CAS  Google Scholar 

  23. Hunter, R.J.: Foundations of Colloid Science, vol. 1. Oxford University Press, New York (1989)

    Google Scholar 

  24. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry. Marcel Dekker Inc., New York (1989)

    Google Scholar 

  25. Ruiz, C.C., Dias–Lopez, L., Aguiar, J.: Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: a thermodynamic and structural study. J. Colloid Interface Sci. 305, 293–300 (2007)

    Article  Google Scholar 

  26. Das, C., Das, B.: Thermodynamic and interfacial adsorption studies on the micellar solutions of alkyltrimethylammonium bromides in ethylene glycol (1) + water (2) mixed solvent media. J. Chem. Eng. Data 54, 559–565 (2009)

    Article  CAS  Google Scholar 

  27. Lopez Fontan, J.L., Costa, J., Ruso, J.M., Prieto, G., Sarmiento, F.: Electrical conductivities and critical micelle concentrations (determined by the local polynomial regression method) of imipramine and clomipramine hydrochlorides from (283 to 313) K. J. Chem. Eng. Data 49, 1008–1012 (2004)

    Article  CAS  Google Scholar 

  28. Evans, H.C.: Alkyl sulphates. Part I. critical micelle concentrations of the sodium salts. J. Chem. Soc. 117, 579–586 (1956)

    Article  Google Scholar 

  29. Asakawa, T., Kitano, H., Ohta, A., Miyagishi, S.: Convenient estimation for counterion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J. Colloid Interface Sci. 242, 284–287 (2001)

    Article  CAS  Google Scholar 

  30. Iijima, H., Kato, T., Soderman, A.: Variation in degree of counterion binding to cesium perfluorooctanoate micelles with surfactant concentration studied by 133Cs and 19F NMR. Langmuir 16, 318–323 (2000)

    Article  CAS  Google Scholar 

  31. Zana, R.: Ionization of cationic micelles: effect of the detergent structure. J. Colloid Interface Sci. 78, 330–337 (1980)

    Article  CAS  Google Scholar 

  32. Gorski, N., Kalus, J.: Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17, 4211–4215 (2001)

    Article  CAS  Google Scholar 

  33. Nusselder, J.J.H., Engberts, J.B.F.N.: Toward a better understanding of the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 148, 353–361 (1992)

    Article  CAS  Google Scholar 

  34. Kresheck, G.C.: In: Franks, F. (ed.) Water. A Comprehensive Treatise. Plenum, New York (1995)

  35. Rubingh, D.N.: In: Mittal K.L. (ed.), Solution Chemistry of Surfactants. Plenum, New York (1979)

  36. Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym. Sci. 262, 948–955 (1984)

    Article  CAS  Google Scholar 

  37. Rodenas, V., Valiente, M., Villafruela, M.S.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J. Phys. Chem. B 103, 4549–4554 (1999)

    Article  CAS  Google Scholar 

  38. Hoffmann, H., Possnecker, G.: The mixing behavior of surfactants. Langmuir 10, 381–389 (1994)

    Article  CAS  Google Scholar 

  39. Maeda, H.A.: A thermodynamic analysis of charged mixed micelles in water. J. Phys. Chem. B 109, 15933–15940 (2005)

    Article  CAS  Google Scholar 

  40. Puvvada, S., Blankschtein, D.: Thermodynamic description of micellization, phase behavior, and phase separation of aqueous solutions of surfactant mixtures. J. Phys. Chem. 96, 5567–5579 (1992)

    Article  CAS  Google Scholar 

  41. Sarmoria, C., Puvvada, S., Blankschtein, D.: Prediction of critical micelle concentrations of nonideal binary surfactant mixtures. Langmuir 8, 2690–2697 (1992)

    Article  CAS  Google Scholar 

  42. Katzung, B.G.: Basic and Clinical Pharmacology, 9th edn. McGraw Hill, New York (2004)

    Google Scholar 

  43. Karlstrom, G.: A new model for upper and lower critical solution temperatures in poly(ethylene oxide) solutions. J. Phys. Chem. 89, 4962–4964 (1985)

    Article  Google Scholar 

  44. Tasaki, K.: Poly(oxyethylene)–water interactions: a molecular dynamics study. J. Am. Chem. Soc. 118, 8459–8469 (1996)

    Article  CAS  Google Scholar 

  45. Khatoon, S., Naqvi, A.Z., Kabir-ud-Din: Phase separation phenomenon in non-ionic surfactant TX-114 micellar solutions: effect of added surfactants and polymers. J. Solution Chem. 40, 643–655 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by DST’s SERC Scheme (SR/FTP/CS-49/2007) and K.U. thanks UGC for awarding BSR Faculty Fellowship. Centre of Excellence for Advanced Materials Research and Chemistry Department, King Abdulaziz University, Jeddah is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Abdul Rub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rub, M.A., Asiri, A.M., Khan, A. et al. Investigation of Micellar and Phase Separation Phenomenon of the Amphiphilic Drug Amitriptyline Hydrochloride with Cationic Hydrotropes. J Solution Chem 42, 390–411 (2013). https://doi.org/10.1007/s10953-013-9964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9964-2

Keywords

Navigation