Skip to main content
Log in

Different Behaviors of Glutathione in Aqueous and DMSO Solutions: Molecular Dynamics Simulation and NMR Experimental Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An all-atom molecular simulation and NMR experiments have been carried out to investigate the interactions and conformations of glutathione (GSH) in aqueous and DMSO solutions. The simulations started, from different initial conformations, are characterized by intramolecular distance, radius of gyration, root-mean-square deviation, and solvent-accessible surface. Interestingly, different behaviors are found in the two different solutions. GSH is highly flexible in an aqueous solution with transitions to the extended, semifolded, and folded states. However, once GSH reaches the folded state in DMSO, it remains there and becomes difficult to break down. The NMR results show agreement with the MD simulations. The water molecule is small. It is also a good proton donor and a good proton acceptor. Water molecules can easily break down the “folded” conformation. In DMSO solution, the stronger hydrogen bonds and the hydrophobic interactions are more important, which can make the GSH in the folded state stable. Variations in the distribution of conformations and the hydrogen-bonding network may play an important role in its function under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kibria, F.M., Lees, W.J.: Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J. Am. Chem. Soc. 130, 796–797 (2008)

    Article  CAS  Google Scholar 

  2. Ralat, L.A., Manevich, Y., Fisher, A.B., Colman, R.F.: Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochem. 45, 360–372 (2006)

    Article  CAS  Google Scholar 

  3. Berg, P.A.W., Hoek, A., Visser, A.J.W.G.: Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophys. J. 87, 2577–2586 (2004)

    Article  Google Scholar 

  4. More, S.S., Vince, R.: Design, synthesis and biological evaluation of glutathione peptidomimetics as components of anti-Parkinson prodrugs. J. Med. Chem. 51, 4581–4588 (2008)

    Article  CAS  Google Scholar 

  5. Visioli, F., Wolfram, R., Richard, D., Abdullah, M.I.C., Crea, R.: Olive phenolics increase glutathione levels in healthy volunteers. J. Agric. Food Chem. 57, 1793–1796 (2009)

    Article  CAS  Google Scholar 

  6. Louzada, P.R., Sebollela, A., Scaramello, M.E., Ferreira, S.T.: Predissociated dimers and molten globule monomers in the equilibrium unfolding of yeast glutathione reductase. Biophys. J. 85, 3255–3261 (2003)

    Article  CAS  Google Scholar 

  7. Zhang, X., Xu, H., Dong, Z., Wang, Y., Liu, J., Shen, J.: Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 126, 10556–10557 (2004)

    Article  CAS  Google Scholar 

  8. Odriozola, I., Loinaz, I., Pomposo, J.A., Grande, H.J.: Gold–glutathione supramolecular hydrogels. J. Mater. Chem. 17, 4843–4846 (2007)

    Article  CAS  Google Scholar 

  9. Anderson, M.F., Nilsson, M., Sims, N.R.: Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem. Int. 44, 153–159 (2004)

    Article  CAS  Google Scholar 

  10. Maher, P.: The effects of stress and aging on glutathione metabolism. Ageing Res. Rev. 4, 288–314 (2005)

    Article  CAS  Google Scholar 

  11. Cunha, I., García, L.M., Guilhermino, L.: Sea-urchin (Paracentrotus lividus) glutathione S-transferases and cholinesterase activities as biomarkers of environmental contamination. J. Environ. Monit. 4, 288–294 (2005)

    Article  Google Scholar 

  12. Shinichi, E., Hoffmann, M.R., Colussi, A.J.: Ozone oxidizes glutathione to a sulfonic acid. Chem. Res. Toxicol. 22, 35–40 (2009)

    Article  Google Scholar 

  13. Petzold, H., Sadler, P.J.: Oxidation induced by the antioxidantglutathione (GSH). Chem. Commun. 37, 4413–4415 (2008)

    Article  Google Scholar 

  14. Balogh, L.M., Trong, I.L., Kripps, K.A., Shireman, L.M., Stenkamp, R.E., Zhang, W., Mannervik, B., Atkins, W.M.: Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal. Biochemistry 49, 1541–1548 (2010)

    Article  CAS  Google Scholar 

  15. Mahajan, S.S., Paranji, R., Mehta, R., Lyon, R.P., Atkins, W.M.: A glutathione-based hydrogel and its site-selective interactions with water. Bioconjug. Chem. 16, 1019–1026 (2005)

    Article  CAS  Google Scholar 

  16. Usta, M., Wortelboer, H.M., Vervoort, J., Boersma, M.G., Rietjens, I.M.C.M., Bladeren, P.J., Cnubben, N.H.P.: Human glutathione s-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells. Chem. Res. Toxicol. 20, 1895–1902 (2007)

    Article  CAS  Google Scholar 

  17. Raghunathan, S., Chandross, J., Kretsinger, R.H., Alliston, T.J., Penington, C.J., Rule, G.S.: Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J. Mol. Biol. 238, 815–832 (1994)

    Article  CAS  Google Scholar 

  18. Bieri, M., Bürgi, T.: Adsorption kinetics of L-glutathione on gold and structural changes during self-assembly: an in situ ATR-IR and QCM study. Phys. Chem. Chem. Phys. 8, 513–520 (2006)

    Article  CAS  Google Scholar 

  19. Meredith, J.J., Dufour, A., Bruch, M.D.: Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy. J. Phys. Chem. B 113, 544–551 (2009)

    Article  CAS  Google Scholar 

  20. Walderhaug, H., Johannessen, E.: Partition equilibria for alcohols in reverse micellar AOT–oil–water systems studied by PGSE-FT NMR. A comparison between AOT-containing and the corresponding AOT-free systems. J. Solution Chem. 35, 979–989 (2006)

    Article  CAS  Google Scholar 

  21. Rauk, A., Armstrong, D.A., Berges, J.: Glutathione radical: intramolecular H abstraction by the thiyl radical. Can. J. Chem. 79, 405–417 (2001)

    Article  CAS  Google Scholar 

  22. Guttmann, D., Poage, G., Johnston, T., Zhitkovich, A.: Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem. Res. Toxicol. 21, 2188–2194 (2008)

    Article  CAS  Google Scholar 

  23. Basu, S., Panigrahi, S., Praharaj, S., Ghosh, S.K., Pande, S., Jana, S., Pal, T.: Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione. New J. Chem. 30, 1333–1339 (2006)

    Article  CAS  Google Scholar 

  24. Prabhakar, R., Vreven, T., Morokuma, K., Musaev, D.G.: Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochem. 44, 11864–11871 (2005)

    Article  CAS  Google Scholar 

  25. Mahajan, S.S., Paranji, R., Mehta, R., Lyon, R.P., Atkins, W.M.: A glutathione-based hydrogel and its site-selective interactions with water. Bioconjug. Chem. 16, 1019–1026 (2005)

    Article  CAS  Google Scholar 

  26. Lampela, O., Juffer, A.H., Rauk, A.: Conformational analysis of glutathione in aqueous solution with molecular dynamics. J. Phys. Chem. A 107, 9208–9220 (2003)

    CAS  Google Scholar 

  27. Rignanese, G., Angelis, F.D., Melchionna, S., Vita, A.D.: Glutathione transferase: a first-principles study of the active site. J. Am. Chem. Soc. 122, 11963–11970 (2000)

    Article  CAS  Google Scholar 

  28. Ridder, L., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J.: Quantum mechanical/molecular mechanical free energy simulations of the glutathione s-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J. Am. Chem. Soc. 124, 9926–9936 (2002)

    Article  CAS  Google Scholar 

  29. Morin, C., Besset, T., Moutet, J., Fayolle, M., Brückner, M., Limosin, D., Becker, K., Davioud-Charvet, E.: The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. Org. Biomol. Chem. 15, 2731–2742 (2008)

    Article  Google Scholar 

  30. Ralat, L.A., Manevich, Y., Fisher, A.B., Colman, R.F.: direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochem. 45, 360–372 (2006)

    Article  CAS  Google Scholar 

  31. Lei, Y., Li, H., Han, S.: An all-atom simulation study on intermolecular interaction of DMSO–water system. Chem. Phys. Lett. 380, 542–548 (2003)

    Article  CAS  Google Scholar 

  32. Vaismant, I.I., Berkowitz, M.L.: Local structural order and molecular associations in water–DMSO mixtures. Molecular dynamics study. J. Am. Chem. Soc. 114, 7889–7896 (1992)

    Article  Google Scholar 

  33. Berweger, C.D., Gunsteren, W.F., Müller-Plathe, F.: Force field parametrization by weak coupling re-engineering SPC water. Chem. Phys. Lett. 232, 429–436 (1995)

    Article  CAS  Google Scholar 

  34. Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)

    CAS  Google Scholar 

  35. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  36. Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J. Am. Chem. Soc. 107, 569–578 (1985)

    Article  CAS  Google Scholar 

  37. Dudek, M.J., Ramnarayan, K., Ponder, J.W.: Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions. J. Comput. Chem. 19, 548–573 (1998). Available from http://dasher.wustl.edu/tinker

    Article  CAS  Google Scholar 

  38. Lei, Y., Li, H., Zhang, R., Han, S.: Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B 108, 10131–10137 (2004)

    Article  CAS  Google Scholar 

  39. The PDB website is http://www.rcsb.org/pdb/

  40. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)

    Article  CAS  Google Scholar 

  41. Jiang, T., Cui, Q., Shi, G., Ma, S.: Protein folding simulations of the hydrophobic–hydrophilic model by combining tabu search with genetic algorithms. J. Chem. Phys. 119, 4592–4596 (2003)

    Article  CAS  Google Scholar 

  42. Bastolla, U., Porto, M., Ortíz, A.R.: Local interactions in protein folding determined through an inverse folding model. Proteins 71, 278–299 (2008)

    Article  CAS  Google Scholar 

  43. Zhang, R., Li, H., Lei, Y., Han, S.: Different weak C–H⋯O contacts in N-Methylacetamide-water system: molecular dynamics simulations and NMR experimental study. J. Phys. Chem. B 108, 12596–12601 (2004)

    Article  CAS  Google Scholar 

  44. Zhang, R., Li, H., Lei, Y., Han, S.: All-atom molecular dynamic simulations and relative NMR spectra study of weak C–H⋯O contacts in amide–water system. J. Phys. Chem. B 109, 7482–7487 (2005)

    Article  CAS  Google Scholar 

  45. Viswanathan, R., Asensio, A., Dannenberg, J.J.: Cooperative hydrogen-bonding in models of antiparallel β-sheets. J. Phys. Chem. A 108, 9205–9212 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Wu, W. & Luo, S. Different Behaviors of Glutathione in Aqueous and DMSO Solutions: Molecular Dynamics Simulation and NMR Experimental Study. J Solution Chem 40, 1784–1795 (2011). https://doi.org/10.1007/s10953-011-9752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9752-9

Keywords

Navigation