Skip to main content
Log in

Facilitated Proton Transfer by a Novel 2-Aminothiazole Derivative Across the Water/1,2-Dichloroethane Interface

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The behavior of proton transfer facilitated by a novel thiazole derivative, N-methyl-4-(4-phenoxyphenyl)thiazol-2-amine (MPPT), across the water/1,2-dichloroethane (1,2-DCE) interface was investigated electrochemically. The ionic partition diagram for MPPT was obtained from interpretation of the cyclic voltammograms. The apparent partition coefficient of MPPT was evaluated by the shaking-flask method under experimental conditions, while that for the protonated form of MPPT was calculated from its transfer potential obtained from the ionic partition diagram. It was suggested that the mechanism for transfer of MPPT across the water/1,2-DCE) interface depends on the pH of the aqueous phase. The parameters of the facilitated proton transfer across the water/1,2-DCE interface were evaluated as a quantitative measure of its lipophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanysek, P., Ramirez, L.B.: Interface between two immiscible liquid electrolytes: a review. J. Chil. Chem. Soc. 53, 1455–1463 (2008). doi:10.4067/S0717-97072008000200002

    Article  CAS  Google Scholar 

  2. Trojanek, A., Langmaier, J., Su, B., Girault, H.H., Samec, Z.: Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid. Electrochem. Commun. 11, 1940–1943 (2009). doi:10.1016/j.elecom.2009.08.022

    Article  CAS  Google Scholar 

  3. Garcia, J.I., Fernandez, R.A., Ruggeri, A.J., Dassie, S.A.: Novel electrochemical approach to the determination of the partition coefficient of neutral weak bases. J. Electroanal. Chem. 594, 80–88 (2006). doi:10.1016/j.jelechem.2006.05.034

    Article  CAS  Google Scholar 

  4. Malkia, A., Liljeroth, P., Kontturi, K.: Membrane activity of ionisable drugs—a task for liquid–liquid electrochemistry? Electrochem. Commun. 5, 473–479 (2003). doi:10.1016/S1388-2481(03)00107-3

    Article  CAS  Google Scholar 

  5. Smith, D.A., Waterbeemd, H.: Pharmacokinetics and metabolism in early drug discovery. Curr. Opin. Chem. Biol. 3, 373–378 (1999). doi:10.1016/S1367-5931(99)80056-8

    Article  CAS  Google Scholar 

  6. Lam, H.T., Pereira, C.M., Roussel, C., Carrupt, P.A., Girault, H.H.: Immobilized pH gradient gel cell to study the pH dependence of drug lipophilicity. Anal. Chem. 78, 1503–1508 (2006). doi:10.1021/ac051808a

    Article  CAS  Google Scholar 

  7. Reymond, F., Carrupt, P.A., Testa, B., Girault, H.H.: Charge and delocalisation effects on the lipophilicity of protonable drugs. Chem. Eur. J. 5, 39–47 (1999). doi:10.1002/(SICI)1521-3765(19990104)5:1

    Article  CAS  Google Scholar 

  8. Reymond, F., Steyaert, G., Carrupt, P.A., Testa, B., Girault, H.H.: Ionic partition diagrams: a potential-pH representation. J. Am. Chem. Soc. 118, 11951–11957 (1996). doi:10.1021/ja962187t

    Article  CAS  Google Scholar 

  9. Akgemci, E.G., Bingol, H., Atalay, T., Ersoz, M.: Effect of N(4)-substituent groups on transfer of 2-benzoylpyridine thiosemicarbazone derivates at the water/1,2-dichloroethane interface. Electrochim. Acta 53, 673–679 (2007). doi:10.1016/j.electacta.2007.07.028

    Article  CAS  Google Scholar 

  10. Gobry, V., Bouchard, G., Carrupt, P.A., Testa, B., Girault, H.H.: Physicochemical characterization of sildenafil: Ionization, lipophilicity behavior and ionic-partition diagram studied by two-phase titration and electrochemistry. Helv. Chim. Acta 83, 1465–1474 (2000). doi:10.1002/1522-2675(20000705)83:7<1465::AID-HLCA1465>3.0.CO;2-#

    Article  CAS  Google Scholar 

  11. Samec, Z., Trojanek, A., Langmaier, J., Samcova, E., Malek, J.: Voltammetry of protonated anesthetics at a liquid membrane: Evaluation of the drug propagation. Electroanalysis 12, 901–904 (2000). doi:10.1002/1521-4109(200008)12:12<901::AID-ELAN901>3.0.CO;2-6

    Article  CAS  Google Scholar 

  12. Liu, X., Bouchard, G., Girault, H.H., Testa, B., Carrupt, P.A.: Partition coefficients of ionizable compounds in o-nitrophenyl octyl ether/water measured by the potentiometric method. Anal. Chem. 75, 7036–7039 (2003). doi:10.1021/ac034972b

    Article  CAS  Google Scholar 

  13. Herzog, G., Daly, P.E., Arrigan, D.W.M.: Electrochemical behaviour of denatured haemoglobin at the liquid|liquid interface. Electrochem. Commun. 12, 335–337 (2010). doi:10.1016/j.elecom.2009.12.020

    Article  CAS  Google Scholar 

  14. Jetzer, W.E., Huq, A.S., Ho, N.F.H., Flynn, G., Duraiswamy, N., Condie, L.: Permeation of mouse skin and silicone rubber membranes by phenols: relationship to in vitro partitioning. J. Pharm. Sci. 75, 1098–1103 (1986). doi:10.1002/jps.2600751116

    Article  CAS  Google Scholar 

  15. Dondoni, A., Marra, A.: Thiazole-mediated synthetic methodology. Chem. Rev. 104, 2557–2600 (2004). doi:10.1021/cr020079l

    Article  CAS  Google Scholar 

  16. Wang, S., Meads, C., Wood, G., Osnowski, A., Anderson, S., Yuill, R., Thomas, M., Mwzna, M., Jackson, W., Midgley, C., Griffiths, G., Fleming, I., Green, S., McNae, I., Wu, S.Y., Mclnness, C., Zheleva, D., Walkinshaw, M.D., Fischer, P.M.: 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: Synthesis, SAR analysis, X-ray crystallography, and biological activity. J. Med. Chem. 47, 1662–1675 (2004). doi:10.1021/jm0309957

    Article  CAS  Google Scholar 

  17. Ling, S., Xin, Z., Qing, Z., Jian-Bing, L., Zhong, J., Jian-Xin, F.: Synthesis, structure, and biological activity of novel 1H-1,2,4-triazol-1-yl-thiazole derivatives. Synth. Commun. 37, 199–207 (2007). doi:10.1080/00397910601031629

    Article  CAS  Google Scholar 

  18. Matsuo, M., Ogino, T., Igari, N., Seno, H., Shimonura, K.: EP Patent 0412404 1991

  19. Pevarello, P., Amici, R., Villa, M., Solom, B., Vulpetti, A., Varasi, M., Brasca, M.G., Traquandi, G., Nesi, M.: EP Patent 1406899 2004

  20. Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J., Fang, J.X.: Synthesis and evaluation of novel ferrocenyl thiazole derivatives as anticancer agents. Synth. Reac. Inorg. Met.-Org. Nano-Met. Chem. 36, 325–330 (2006). doi:10.1080/15533170600651405

    CAS  Google Scholar 

  21. Ogretir, C., Demirayak, S., Duran, M.: Spectroscopic determination and evaluation of acidity constants for some drug precursor 2-amino-4-(3- or 4-substituted phenyl) thiazole derivatives. J. Chem. Eng. Data 55, 1137–1142 (2010). doi:10.1021/je9005739

    Article  CAS  Google Scholar 

  22. Karipcin, F., Dede, B., Ozkorucuklu, S.P., Kabalcilar, E.: Mn(II), Co(II) and Ni(II) complexes of 4-(2-thiazolylazo)resorcinol: Syntheses, characterization, catalase-like activity, thermal and electrochemical behavior. Dyes Pigm. 84, 14–18 (2010). doi:10.1016/j.dyepig.2009.06.010

    Article  CAS  Google Scholar 

  23. Chen, L., Yang, C., Qina, J., Gao, J., Ma, D.: Tuning of emission: Synthesis, structure and photophysical properties of imidazole, oxazole and thiazole-based iridium (III) complexes. Inorg. Chim. Acta 359, 4207–4214 (2006). doi:10.1016/j.ica.2006.06.039

    Article  CAS  Google Scholar 

  24. Potewar, T.M., Ingale, S.A., Srinivasan, K.V.: Catalyst-free efficient synthesis of 2-aminothiazoles in water at ambient temperature. Tetrahedron 64, 5019–5022 (2008). doi:10.1016/j.tet.2008.03.082

    Article  CAS  Google Scholar 

  25. Su, B., Hatay, I., Li, F., Partovi-Nia, R., Mendez, M.A., Samec, Z., Ersoz, M., Girault, H.H.: Oxygen reduction by decamethylferrocene at liquid/liquid interfaces catalyzed by dodecylaniline. J. Electroanal. Chem. 639, 102–108 (2010). doi:10.1016/j.jelechem.2009.11.029

    Article  CAS  Google Scholar 

  26. Samec, Z.: Electrochemistry at the interface between two immiscible electrolyte solutions (IUPAC Technical Report). Pure Appl. Chem. 76, 2147–2180 (2004). doi:10.1351/pac200476122147

    Article  CAS  Google Scholar 

  27. Kontturi, K., Murtomaki, L.: Electrochemical determination of partition coefficients of drugs. J. Pharm. Sci. 81, 970–975 (1992). doi:10.1002/jps.2600811003

    Article  CAS  Google Scholar 

  28. Koryta, J.: Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions–II. Electrochim. Acta 29, 445–452 (1984). doi:10.1016/0013-4686(84)87092-9

    Article  CAS  Google Scholar 

  29. Reymond, F., Chopineaux-Courtois, V., Steyaert, G., Bouchard, G., Carrupt, P.A., Testa, B., Girault, H.H.: Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation. J. Electroanal. Chem. 462, 235–250 (1999). doi:10.1016/S0022-0728(98)00418-5

    Article  CAS  Google Scholar 

  30. Sabela, A., Marecek, V., Samec, Z., Fuoco, R.: Standard Gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane. Electrochim. Acta 37, 231–235 (1992). doi:10.1016/0013-4686(92)85008-9

    Article  CAS  Google Scholar 

  31. Katano, H., Senda, M.: Voltammetric study of the transfer of heavy metal ions at the nitrobenzene/water interface assisted by 1,4,7,10,13,16-hexathiacyclooctadecane. Anal. Sci. 15, 1179–1184 (1999). doi:10.2116/analsci.15.1179

    Article  CAS  Google Scholar 

  32. Blake, A.J., Cacote, M.H.M., Devillanova, F.A., Garau, A., Isaia, F., Lippolis, V., Pereira, C.M., Silva, F., Tei, L.: Coordination chemistry of 2,5,8-trithia[9],(2,9)-1,10-phenanthrolinophane (L) toward rhodium(III) at the polarised water/1,2-dichloroethane interface—a possible new approach to the problem of separating RhIII from chloride media. Eur. J. Inorg. Chem. 2002, 1816–1822 (2002). doi:10.1002/1099-0682(200207)2002:7<1816::AID-EJIC1816>3.0.CO;2-Y

    Article  Google Scholar 

  33. Plass, S.U.: Two-phase partition profiling of drugs and ionisable compounds, Ph.D. Thesis, EPFL 3000, Lausanne, Switzerland (2004)

  34. Homolka, D., Marecek, V., Samec, Z., Base, K., Wendt, H.: The partition of amines between water and an organic solvent phase. J. Electroanal. Chem. 163, 159–170 (1984). doi:10.1016/S0022-0728(84)80049-2

    Article  CAS  Google Scholar 

  35. Kong, Y.T., Kakiuchi, T.: Electrochemical determination of the lipophilicity scale of arenediazonium ions based on the ion transfer across the liquid|liquid interface. J. Electroanal. Chem. 483, 22–28 (2000). doi:10.1016/S0022-0728(00)00012-7

    Article  CAS  Google Scholar 

  36. Brown, R., Fischer, R., Blunk, J., Berlin, K.D., Ramalingam, K., Durham, N.N.: Biological activity and active groups of novel pyrazoles, thiosemicarbazones and substituted thiazoles. Proc. Okla. Acad. Sci. 56, 15–17 (1976)

    CAS  Google Scholar 

  37. Alemu, H.: Voltammetry of drugs at the interface between two immiscible electrolyte solutions. Pure Appl. Chem. 76, 697–705 (2004). doi:10.1351/pac200476040697

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haluk Bingol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingol, H., Coskun, A. Facilitated Proton Transfer by a Novel 2-Aminothiazole Derivative Across the Water/1,2-Dichloroethane Interface. J Solution Chem 40, 1505–1515 (2011). https://doi.org/10.1007/s10953-011-9681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9681-7

Keywords

Navigation