Skip to main content
Log in

The Association Constants of H+ and Ca2 + with 2-Keto-D-Gluconate in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

2-Keto-D-gluconate (kG) is naturally produced in soils, sediments and rock faces through the microbial oxidation of glucose. Studies have qualitatively shown kG to enhance the dissolution of soil minerals. However, quantitative information, such as the log K values for the formation of metal–kG complexes, are not available. This paper presents the results of potentiometric titration studies that employ H+ and Ca2+ ion selective electrodes (ISEs) to determine the conditional ion association constants (log Q values) for the protonation and deprotonation of kG and the formation of Ca–kG complexes. The experimentally-determined log Q values were then converted to the corresponding ion association constants (the zero ionic strength condition; log K values) by employing a modified Davies equation for charged species and the Setchenów equation for neutral species. The log K values were determined by potentiometric titrations at constant kG concentration, varied ionic strengths, 25 or 22 C, and in the absence of CO2. The computer model GEOCHEM-PC was used to determine the aqueous speciation of ions other than kG and the computer model FITEQL was used to estimate conditional log Q values for reactions in the various chemical models. Based on our evaluations, equilibrium constants for the following reactions were determined: H++ kG ⇌ HkG0, log Ka1 = (3.00 ± 0.06), kG⇌ H–1kG2–+ H+, log Ka–1 = –(11.97 ± 0.41), and Ca2++ kG⇌ CakG+, log K101 = (1.74 ± 0.04).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. M. Huang and A. Violante, in Interactions of Soil Minerals With Natural Organics and Microbes, P. M. Huang and M. Schnitzer, eds. (SSSA Special Publication No. 17, SSSA, Madison, WI, 1986), pp. 159–221.

  2. J. S. Geelhoed, T. Hiemstra, and W. H. Van Riemsdijk, Environ. Sci. Technol. 32, 2119 (1998).

    Article  Google Scholar 

  3. M. Grafe, M. J. Eick, P. R. Grossl, and A. M. Sanders, J. Environ. Qual. 31, 1115 (2002).

    PubMed  Google Scholar 

  4. U. Kafkafi, B. Bar-Yosef, R. Rosenberg, and G. Sposito, Soil Sci. Soc. Am. J. 52, 1585 (1988).

    Google Scholar 

  5. H. Wijnja and C. P. Schulthess, Soil Sci. Soc. Am. J. 64, 898 (2000).

    Google Scholar 

  6. H. L. Yao and H. H. Yeh, Langmuir 12, 2981 (1996).

    Article  Google Scholar 

  7. T. R. Fox, N. B. Comerford, and W. W. McFee, Soil Sci. Soc. Am. J. 54, 1763 (1990).

    Google Scholar 

  8. W. P. Inskeep and J. C. Silvertooth, Soil Sci. Soc. Am. J. 52, 941 (1988).

    Google Scholar 

  9. K. Inoue and P. M. Huang, Soil Sci. Soc. Am. J. 50, 1623 (1986).

    Google Scholar 

  10. D. L. Jones, Plant Soil 205, 25 (1998).

    Article  Google Scholar 

  11. R. B. Duff, D. M. Webley, and R. O. Scott, Soil Sci. 95, 105 (1963).

    Google Scholar 

  12. A. Moghimi, M. E. Tate, and J. M. Oades, Soil Biol. Biochem. 10, 283 (1978).

    Article  Google Scholar 

  13. G. F. Vance, F. J. Stevenson, and F. J. Sikora, in The Environmental Chemistry of Aluminum, G. Sposito, ed. (Lewis, Boca Raton, FL, 1995), pp. 169–220.

    Google Scholar 

  14. S. Banik and B. K. Dey, Zbl. Mikrobiol. 138, 437 (1983).

    Google Scholar 

  15. T. Chiyonobu, O. Adachi, and M. Ameyama, Agric. Biol. Chem. 37, 2871 (1973).

    Google Scholar 

  16. H. L. Erlich, in Geomicrobiology, H. L. Ehrlich, ed. (Marcel Dekker, New York, 1981), pp. 131–135.

    Google Scholar 

  17. A. K. Halder and P. K. Chakrabartty, Folia Microbiol. 38, 325 (1993).

    Google Scholar 

  18. R. Klasen, S. Bringer-Meyer, and H. Sahm, Biotechnol. Bioeng. 40, 183 (1992).

    Article  Google Scholar 

  19. R. M. N. Kucey, H. H. Janzen, and M. E. Leggett, Adv. Agron. 42, 199 (1989).

    Google Scholar 

  20. O. M. Neijssel and D. W. Tempest, Arch. Microbiol. 105, 183 (1975).

    Article  PubMed  Google Scholar 

  21. J. R. Sokatch, Bacterial Physiology and Metabolism (Academic, London, 1969), pp.117–119.

    Google Scholar 

  22. D. M. Webley and R. B. Duff, Plant Soil 22, 307 (1965).

    Article  Google Scholar 

  23. A. Moghimi, M. E. Tate, and J. M. Oades, Soil Biol. Biochem. 10, 283 (1978).

    Article  Google Scholar 

  24. M. E. Essington, J. B. Nelson, and W. L. Holden, Soil Sci. Soc. Am. J. 69 (2005).

  25. A. Moghimi and M. E. Tate, Soil Biol. Biochem. 10, 289 (1978).

    Article  Google Scholar 

  26. P. A. W. van Hees, U. S. Lundström, and R. Giesler, Geoderma 94, 173 (2000).

    Article  Google Scholar 

  27. B. W. Strobel, Geoderma 99, 169 (2001).

    Article  Google Scholar 

  28. A. E. Martell and R. E. Smith, Critical Stability Constants, Vol. 3 (Plenum, New York, 1977).

    Google Scholar 

  29. R. J. Motekaitis and A. E. Martell, Inorg. Chem. 23, 18 (1984).

    Article  Google Scholar 

  30. W. L. Holden, The Solubilization of Phosphates in the Presence of Organic Acids, MS. Thesis (The University of Tennessee, Knoxville, 1996).

  31. R. B. Duff and D. M. Webley, Chem. Ind. Lond. 1959, 1376 (1959).

    Google Scholar 

  32. J. D. Wolt, Soil Solution Chemistry: Applications to Environmental Science and Agriculture (Wiley, New York, 1994).

    Google Scholar 

  33. M. E. Essington, Soil and Water Chemistry: An Integrative Approach (CRC, Boca Raton, FL, 2003)

    Google Scholar 

  34. M. E. Essington, Soil Sci. Soc. Am. J. 56, 1124 (1992).

    Google Scholar 

  35. A. L. Herbelin and J. C. Westall, FITEQL; A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 4.0 (Oregon State University, Corvallis, Report 99-01, 1999).

    Google Scholar 

  36. D. R. Parker, W. A. Norvell, and R. L. Chaney, in Chemical Equilibrium and Reaction Models, R. H. Loeppert et al., eds. (SSSA Special Publication No. 42, SSSA, Madison, WI, 1995), pp. 253–269.

  37. W. Stumm and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. (Wiley, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Essington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, J.B., Essington, M.E. The Association Constants of H+ and Ca2 + with 2-Keto-D-Gluconate in Aqueous Solutions. J Solution Chem 34, 789–800 (2005). https://doi.org/10.1007/s10953-005-5116-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-5116-7

Keywords

Navigation