Skip to main content

Advertisement

Log in

Coda wave attenuation in the Parecis Basin, Amazon Craton, Brazil: sensitivity to basement depth

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using \(Q_{\rm c} =Q_{\rm 0} f^\eta \), where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation \(\chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }\), for the calculation of the geometrical attenuation (γ) and effective attenuation \((Q_{\rm e}^{-1} )\). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin \(Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}\), for the surrounding shield \(Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}\), and for the whole region of Porto dos Gaúchos \(Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}\). Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, \(Q_{\rm e}^{-1} =0.0001\), ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, \(Q_{\rm e}^{-1} =0.0003\), ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, \(Q_{\rm e}^{-1} =0.0005\), ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, \(Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)}\) (in the deepest part of the basin), than in the basement, \(Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}\) (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K (1969) Analysis of seismic coda of local earthquakes as scattered waves. J Geophys Res 74:615–631

    Article  Google Scholar 

  • Aki K (1981) Source and scattering effects on the spectra of small local earthquakes. Bull Seismol Soc Am 71:1687–1700

    Google Scholar 

  • Aki K, Chouet B (1975) Origin of the coda waves: source, attenuation and scattering effects. J Geophys Res 80:3322–3342

    Article  Google Scholar 

  • Bahia RBC, Martins-Neto MA, Barbosa MAC, Pedreira AJ (2007) Análise da evolução tectonossedimentar da Bacia dos Parecis através de métodos potenciais. Revista Brasileira de Geociências 37(4):639–649

    Google Scholar 

  • Barros LV, Assumpção M (2009) Basement depths in the Parecis basin (Amazon), with receiver functions from small local earthquakes in Porto dos Gaúchos seismic zone. Submitted to Journal to South American Earth Science

  • Barros LV, Assumpção M, Quintero R, Caixeta D (2009) The intraplate Porto dos Gaúchos Seismic Zone in the Amazon craton—Brasil. Tectonophysics 469:37– 47

    Article  Google Scholar 

  • Biswas NN, Aki K (1984) Characteristics of coda waves: central and south-central Alaska. Bull Seism Soc Am 74(No. 2):493–507

    Google Scholar 

  • Carvalho LA, Souza JL (2006) Attenuation of seismic coda waves in João Câmara (Rio Grande do Norte). Acta Geodaetica et Geophysica Hungarica 41(1):133– 142

    Article  Google Scholar 

  • Dias AP, Souza JL (2004) Estimates of coda Q attenuation in João Câmara area (Northeastern Brazil). Journal of Seismology 8:235–246

    Article  Google Scholar 

  • Gupta SC, Singh VN, Kumar AI (1995) Attenuation of coda waves in the Garhwal Himalaya, India. Phys Earth Planet Inter 87:247–253

    Article  Google Scholar 

  • Havskov J, Ottomöller L (2008) SEISAN: the earthquake analysis software for windows, solares, linux and macosx, version 8.2.1. Institute of Solid Earth Science, University of Bergen, Norway

    Google Scholar 

  • Havskov J, Malone S, McClurg D, Crosson R (1989) Coda Q for the state of Washington. Bull Seismol Soc Am 79(4):1024–1038

    Google Scholar 

  • Herraiz M, Espinosa AF (1987) Coda waves: a review. PAGEOPH 125(4):499–577

    Article  Google Scholar 

  • Herrmann R (1980) Q estimates using the coda of local earthquakes. Bull Seismol Am 70(2):447–468

    Google Scholar 

  • Ibáñez JM, Del Pezzo E, Del Miguel F, Herraiz M, Alguacil G, Morales J (1990) Depth-dependent seismic attenuation in Granada zone (Southern Spain). Bull Seismol Soc Am 80(N0. 5):1232–1244

    Google Scholar 

  • Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78:741–769

    Google Scholar 

  • Jin A, Aki K (1989) Spatial and temporal correlation between coda Q − 1 and seismicity and its physical mechanism. J Geophys Res 94:14041–14059

    Article  Google Scholar 

  • Johnston AC (1989) The seismicity of stable continental interiors. In: Gregersen S, Basham PW (ed) Earthquakes at North Atlantic passive margins: neotectonics and post-glacial rebound. Kluwer Academic Publishers, Kluwer, pp 299–327

    Google Scholar 

  • Kumar N, Parvez IA, Virk HS (2005) Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Phys Earth Planet Inter 151:243– 258

    Article  Google Scholar 

  • Kvamme LB, Havskov J (1989) Q in Southern Norway. Bull Seismol Soc Am 75(5):1575–1588

    Google Scholar 

  • Leite JA, Saes GS (2003) Geocronologia Pb/Pb de zircões detríticos e análise estratigráfica das coberturas sedimentares Proterozóicas do sudeste do Cráton Amazônico. Rev do Instituto de Geociências da USP, São Paulo 3:113–127

    Google Scholar 

  • Lienert BR, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seism Res Lett 66(5):26–36

    Google Scholar 

  • Mendiguren JA, Richter FM (1978) On the origin of compressional intraplate stresses in South America. Phys of the Earth and Planet Int 16:318–326

    Article  Google Scholar 

  • Morozov IB (2008) Geometrical attenuation, frequency dependence of Q, and the absorption band problem. Geophys J Int 175:239–252

    Article  Google Scholar 

  • Morozov IB (2009a) Thirty years of confusion around “scattering Q? Seismol Res Lett 80:5–7

    Article  Google Scholar 

  • Morozov IB (2009b) Temporal variations of coda Q: an attenuation-coefficient view. http://seisweb.usask.ca/ibm/papers/Q/. Accessed 12/15/2009

  • Morozov IB, Zang C, Duenow JN, Morozova EA, Smithson SB (2008) Frequency dependence of coda Q, part I: numerical modeling and examples from peaceful nuclear explosions. Bull Seis Am 98(6):2615–2628

    Article  Google Scholar 

  • Moncayo E, Vargas C, Durán J (2004) Temporal variation of coda-Q at Galeras Volcano, Colombia. Earth Sci Res J 8(1):19–24

    Google Scholar 

  • Mukhopadhyay S, Sharma J, Massey R, Kayal JR (2008) Lapse-time dependence of coda Q in the source region of the 1999 Chamoli earthquake. Bull Seism Am 98(4):2880–2086

    Google Scholar 

  • Nuttli OW (1973) Seismic wave attenuation and magnitude relations for eastern North America. J Geophys Res 78:876–885

    Article  Google Scholar 

  • Pulli JJ (1984) Attenuation of coda waves in New England. Bull Seism Am 74(4):1149–1166

    Google Scholar 

  • Rautian TG, Khalturin VI (1978) The use of the coda for determination of the earthquake spectrum. Bull Seism Soc Am 68:923–948

    Google Scholar 

  • Rebollar CJ, Traslosheros C, Alvarez R (1985) Estimates of seismic waves attenuation in northern Baja California. Bull Soc Seismol 75(5):1371–1382

    Google Scholar 

  • Sato H (1977) Energy propagation including scattering effects, single isotropic scattering approximation. J Phys Earth 25:27–41

    Google Scholar 

  • Sharma B, Teotia SS, Kumar D (2007) Attenuation of P, S, and coda waves in Koyna region, India. J Seismology. doi:10.1007/s10950-007-9057-z

    Google Scholar 

  • Singh S, Herrmann R (1983) Regionalization of crustal coda Q in the continental United States. J Geophys Res 88(No. B1):527–538

    Article  Google Scholar 

  • Souza JL, Mitchell BJ (1998) Lg coda Q variations across South America and their relations to crustal evolution. Pure Appl Geophys 153:587–612

    Article  Google Scholar 

  • Tassinari CCG, Bittencourt JS, Geraldes MC, Macambira MJB, Lafon JM (2000) The Amazonian Craton. In: Cordani et al (ed) Tectonic evolution of South America, 31st Int Geol Congr Rio de Janeiro, pp 41–95

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Vieira Barros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira Barros, L., Assumpção, M., Quintero, R. et al. Coda wave attenuation in the Parecis Basin, Amazon Craton, Brazil: sensitivity to basement depth. J Seismol 15, 391–409 (2011). https://doi.org/10.1007/s10950-011-9231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-011-9231-1

Keywords

Navigation