Skip to main content
Log in

Modeling the strong ground motion and rupture characteristics of the March 31, 2006, Darb-e-Astane earthquake, Iran, using a hybrid of near-field SH-wave and empirical Green’s function method

  • Original article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We analyze the strong motion accelerograms of the moderate (M w = 6.1), March 31, 2006, Darb-e-Astane earthquake of western Iran and also those of one of its prominently recorded, large (M w = 5.1) foreshock and (M w = 4.9) aftershock. (1) Using derived SH-wave spectral data, we first objectively estimate the parameters \(\mathit{\Omega} _{\rm o}\) (long period spectral level), f c (corner frequency) and Q(f) (frequency dependent, average shear wave quality factor), appropriate for the best-fit Brune ω  − 2 spectrum of each of these three events. We then perform a non-linear least square analysis of the SH-wave spectral data to provide approximate near-field estimates of the strike, dip, and rake of the causative faults and also the seismic moment, moment magnitude, source size, and average stress drop of these three events. (2) In the next step, we use these approximate values and an empirical Green’s function approach, in an iterative manner, to optimally model the strong ground motion and rupture characteristics of the main event in terms of peak ground acceleration/velocity/displacement and duration of ground shaking and thereby provide improved, more reliable estimates of the causative fault parameters of the main event and its asperities. Our near-field estimates for both the main moderate event and the two smaller events are in good conformity with the corresponding far-field estimates reported by other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K (1980) Scattering and attenuation of shear waves in the lithosphere. J Geophys Res 85:6496–6504. doi:10.1029/JB085iB11p06496

    Article  Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology: theory and methods, vol 1. Freeman, San Francisco

    Google Scholar 

  • Andrews DJ (1986) Objective determination of source parameters and similarity of earthquakes of different size. In: Das S, Boatwright J, Scholz CH (eds) Earthquake source mechanics. Maurice Ewing, vol 6, Geophys Monogr, vol 37. Am Geophys Union, Washington, DC, pp 259–268

    Google Scholar 

  • Asudeh I (1982) Seismic structure of Iran from surface and body wave data. Geophys J R Astron Soc 71:715–730

    Google Scholar 

  • Baker C, Jackson J, Priestley K (1993) Earthquakes on Kazerun line in the Zagros mountains of Iran: strike-slip faulting within a folded-and-thrust belt. Geophys J Int 115:41–61. doi:10.1111/j.1365-246X.1993.tb05587.x

    Article  Google Scholar 

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224. doi:10.1016/0040-1951(94)00185-C

    Article  Google Scholar 

  • Berberian M, King G (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265. doi:10.1139/e81-163

    Article  Google Scholar 

  • Boatwright J (1988) The seismic radiation from computer models of faulting. Bull Seismol Soc Am 78:489–508

    Google Scholar 

  • Brune JN (1970) Tectonic stress and spectra of shear waves from earthquakes. J Geophys Res 75:4997–5009. doi:10.1029/JB075i026p04997

    Article  Google Scholar 

  • Brune JN (1971) Correction. J Geophys Res 76:5002. doi:10.1029/JB076i020p05002

    Article  Google Scholar 

  • Castro RR, Anderson JG, Singh SK (1990) Site response, attenuation and source spectra of S-waves along the Guerrero, Mexico subduction zone. Bull Seismol Soc Am 80:1481–1503

    Google Scholar 

  • Castro RR, Monachasi G, Muccianelli M, Trojani L, Pacer F (1999) P-and-S-wave attenuation in the region of Marche, Italy. J Tectonophysics 302:123–132. doi:10.1016/S0040-1951(98)00277-7

    Article  Google Scholar 

  • Dainty AM (1981) A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys Res Lett 8:1126–1128. doi:10.1029/GL008i011p01126

    Article  Google Scholar 

  • Dehghani GA, Makris J (1984) The gravity field and crustal structure of Iran. Neues Jahrbuch Fuer geologie und Palaeontologie. Abhandlungen 168:215–229

    Google Scholar 

  • Falcon NL (1974) Southern Iran: Zagros Mountains, in mesozoic-cenozoic orogenic belts, data for orogenic studies. In: Spencer AM (ed) Geol Soc Spec Publ London, vol 4, pp 199–211

  • Fletcher JB (1995) Source parameters and crustal Q for four earthquakes in South Carolina. Seismol Res Lett 66:44–58

    Google Scholar 

  • Frankel A, Clayton RW (1986) Finite difference simulations of seismic scattering: implications for propagation of short period seismic waves in the crust and models of crustal heterogenity. J Geophys Res 91:6465–6489. doi:10.1029/JB091iB06p06465

    Article  Google Scholar 

  • Gidon M, Berthier F, Billiault JP, Halbonn B, Maurizot P (1974) Sur le carateres et l’ ampleur du coulissement de la ‘Main Fault’ dans la region de Borujerd- Dorud oriental, Iran. C R Acad Sci Paris Ser D 278:701–704

    Google Scholar 

  • Giese P, Makris J, Akasheh B, Roewer P, Letz H, Mostaanpour M (1984) The crustal structure in southern Iran derived from seismic exploration data. Neues Jahrb Geol Palaeontol 168:230–243

    Google Scholar 

  • Hamzehloo H (2005a) Determination of causative fault parameters for some recent Iranian earthquakes using near field SH-wave data. J Asian Earth Sci 25:621–628. doi:10.1016/j.jseaes.2004.06.005

    Article  Google Scholar 

  • Hamzehloo H (2005b) Strong ground motion modelling of causative fault for the 2002 Avaj earthquake, Iran. Tectonophysics 409:159–174. doi:10.1016/j.tecto.2005.08.016

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350. doi:10.1029/JB084iB05p02348

    Article  Google Scholar 

  • Haskell NA (1960) Crustal reflection of plane SH waves. J Geophys Res 65:4147–4150. doi:10.1029/JZ065i012p04147

    Article  Google Scholar 

  • Hatzfeld D, Tatar M, Priestley K, Ghafory-Ashtiany M (2003) Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophys J Int 155:403–410. doi:10.1046/j.1365–246X.2003.02045.x

    Article  Google Scholar 

  • Herrmann RB, Kijko A (1983) Modelling some empirical vertical component Lg relations. Bull Seismol Soc Am 73:157–171

    Google Scholar 

  • Hessami K, Jamali F, Tabasi H (2003) Major active faults of Iran. International institute of earthquake engineering and seismology, scale 1:2500000

  • Irikura K (1986) Prediction of strong acceleration motion using empirical Green’s function. In: Proc 7th Japan earthquake engineering symposium, Tokyo, pp 151–156

  • Irikura K, Kamae K (1994) Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique. Ann Geofis XXXVII(6):25–47

    Google Scholar 

  • Jackson J (1992) Partitioning of strike-slip and convergent motion between Eurasia and Arabian in eastern Turkey and Caucasus. J Geophys Res 97:12471–12479. doi:10.1029/92JB00944

    Article  Google Scholar 

  • Jackson J, Fitch T (1981) Basement faulting and the focal depth of the large earthquakes in the Zagros mountains (Iran). Geophys J R Astron Soc 64:561–586

    Google Scholar 

  • Jackson J, Mckenzie DP (1984) Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264

    Google Scholar 

  • Joyner WB, Boore DM (1986) On simulation large earthquakes by Green’s functions addition of smaller earthquakes, in earthquake source mechanics, (Maurice Ewing series 6). In: Das S, Boatwright J, Sholtz CH (eds) American geophysical monograph vol 37, Washington, DC, pp 269–274

  • Kadinsky-Cade K, Barazangi M (1982) Seismotectonics of southern Iran: the Oman line. Tectonics 1:389–412

    Article  Google Scholar 

  • Kamae K, Irikura K (1998) Source model of the 1995 Hyogo-ken Nanbu earthquake and simulation of near-source ground motion. Bull Seismol Soc Am 88:400–412

    Google Scholar 

  • Kanamori HK, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095

    Google Scholar 

  • Kanamori H, Jennings PC, Singh SK, Astiz L (1993) Estimation of strong ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap. Bull Seismol Soc Am 83:811–829

    Google Scholar 

  • Kinoshita S (1994) Frequency- dependent attenuation of shear wave in the crust of the southern Kanto area. Bull Seismol Soc Am 59:1387–1396

    Google Scholar 

  • Kumar D, Sarkar I, Sriram V, Khattri KN (2005) Estimation of the source parameters of the Himalaya earthquake of October 19, 1991, average shear wave attenuation parameter and local site effects from ccelerograms. Tectonophysics 407:1–27. doi:10.1016/j.tecto.2005.06.006

    Article  Google Scholar 

  • Lay T, Wallace TC (1995) Modern global seismology. Academic, New York

    Google Scholar 

  • Liu H, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophys J R Astron Soc 47:41–58

    Google Scholar 

  • Maggi A, Priestley K (2005) Surface waveform tomography of the Turkish–Iranian Plateau. Geophys J Int 160:1068–1080. doi:10.1111/j.1365-246X.2005.02505.x

    Article  Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J R Astron Soc 30:109–185

    Google Scholar 

  • Mitchell BJ (1980) Frequency dependence of shear wave internal friction in the continental crust of Eastern North America. J Geophys Res 85:5212–5218. doi:10.1029/JB085iB10p05212

    Article  Google Scholar 

  • Mitchell BJ (1981) Regional variation and frequency dependence on Qβ in the crust of the United States. Bull Seismol Soc Am 71:1531–1538

    Google Scholar 

  • Moghadam AS, Hesami K, Javan Doloi G, Mahdavifar M, Hamzehloo H (2006) The 2006 Darb-e-Astane earthquake field report. In: International institute of earthquake engineering and seismology, 233 p. (In Farsi)

  • Ni J, Barazangi M (1986) Seismotectonics of the Zagros continental collision zone and comparison with the Himalayas. J Geophys Res 91:8205–8218. doi:10.1029/JB091iB08p08205

    Article  Google Scholar 

  • Oth A, Wenzel F, Radulian M (2007) Source parameters of intermediate-depth Vrancea (Romania) earthquakes from empirical Green’s function modeling. Tectonophysics 438:33–56. doi:10.1016/j.tecto.2007.02.016

    Article  Google Scholar 

  • Pulido N, Ojeda A, Atakan K, Kubo T (2004) Strong ground motion estimation in the Sea of Marmara region (Turkey) based on a scenario earthquake. Tectonophysics 391:357–374. doi:10.1016/j.tecto.2004.07.023

    Article  Google Scholar 

  • Richards PG, Menke W (1983) The apparent attenuation of a scattering medium. Bull Seismol Soc Am 73:1005–1021

    Google Scholar 

  • Sarkar I, Hamzehloo H, Khattri KN (2003) Estimation of causative fault parameters of the Rudbar earthquake of June 20, 1990 from near field SH-wave data. Tectonophysics 364:55–70. doi:10.1016/S0040-1951(03)00050-7

    Article  Google Scholar 

  • Sarkar I, SriRam V, Hamzehloo H, Khattri KN (2005) Subevent analysis for the Tabas earthquake of September 16, 1978, using near field accelerograms. Phys Earth Planet Inter 151:53–76

    Google Scholar 

  • Singh SK, Mohanty WK, Bansal BK, Roonwal GS (2002) Ground motion in Delhi from future large/great earthquakes in the central seismic gap of the Himalayan Arc. Bull Seismol Soc Am 92:555–569. doi:10.1785/0120010139

    Article  Google Scholar 

  • Snoke JA (1987) Stable determination of (Brune) stress drops. Bull Seismol Soc Am 77:530–538

    Google Scholar 

  • Snyder DB, Barazangi M (1986) Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics 5:361–373. doi:10.1029/TC005i003p00361

    Article  Google Scholar 

  • Stöcklin J (1974) Possible ancient continental margins in Iran. In: Burke CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 873–887

    Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys J Int 156:506–526. doi:10.1111/j.1365-246X.2004.02092.x

    Article  Google Scholar 

  • Tatar M, Hatzfeld D, Ghafory-Ashtiany M (2004) Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophys J Int 156:255–266. doi:10.1111/j.1365-246X.2003.02145.x

    Article  Google Scholar 

  • Tchalenko JS, Braud J (1974) Seismicity and structure of the Zagros (Iran): the main recent fault between 33° and 35°N. Philos Trans R Soc A 277:1–25. doi:10.1098/rsta.1974.0044

    Article  Google Scholar 

  • Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bull Seismol Soc Am 65:581–626

    Google Scholar 

  • Tumarkin AG, Archuleta RJ, Madariaga R (1994) Scaling relations for composite earthquake models. Bull Seismol Soc Am 84:1279–1283

    Google Scholar 

  • Wellman HW (1966) Active wrench faults of Iran, Afghanistan and Pakistan. Geol Rundsch 55:716–735. doi:10.1007/BF02029650

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Zeng Y, Anderson JG, Yu G (1994) A composite source model for computing realistic synthetic ground motions. Geophys Res Lett 21:725–728. doi:10.1029/94GL00367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hamzehloo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamzehloo, H., Rahimi, H., Sarkar, I. et al. Modeling the strong ground motion and rupture characteristics of the March 31, 2006, Darb-e-Astane earthquake, Iran, using a hybrid of near-field SH-wave and empirical Green’s function method. J Seismol 14, 169–195 (2010). https://doi.org/10.1007/s10950-009-9159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-009-9159-x

Keywords

Navigation