Skip to main content
Log in

Study of Angular-Dependent Magnetic Anisotropy and Spin Pumping-Induced Inverse Spin Hall Effect (ISHE) in Py and Py/Pt Bilayer: Realization of Quantum Metrology

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Angular-dependent magneto-optical Kerr effect (MOKE) and coplanar waveguide ferromagnetic resonance (CPW-FMR) measurements were performed to unravel the nature of anisotropy present in Ni\(_{80}\)Fe\(_{20}\) (Py) thin film. The “in-plane” angular variation of coercive field (\(H^{IP}_{c}\)) and resonance field (\(H^{IP}_{r}\)) confirms the magnetic anisotropy is negligible, where the spins are confined to the plane of the Py film. The variation of resonance field in “out-of-plane” geometry, \(H^{OP}_{r}\), strongly indicates the presence of “out-of-plane” uniaxial anisotropy in the Py thin film. Also, the inverse spin Hall effect (ISHE) technique is employed to measure spin pumping-induced DC voltage, V\(_{ISHE}\), generated across the Py/Pt bilayer. The line shape analysis method has been utilized to distinguish ISHE and spin rectification contributions. The measured V\(_{ISHE}\) at low (4 GHz) and high (35 GHz) frequencies confirm the pure spin current injected through the Py-Pt interface due to spin pumping using CPW-FMR setup, which has a direct bearing on the realization of quantum metrology through the spin current quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Yin, Y., Pan, F., Ahlberg, M., Ranjbar, M., Dürrenfeld, P., Houshang, A., Haidar, M., Bergqvist, L., Zhai, Y., Dumas, R.K., et al.: Tunable permalloy-based films for magnonic devices. Phys. Rev. B 92(2), 024427 (2015)

    Article  ADS  Google Scholar 

  2. Gong, H., Rao, M., Laughlin, D.E., Lambeth, D.N.: Highly oriented NiFe soft magnetic films on Si substrates. J. Appl. Phys. 85(8), 5750–5752 (1999)

    Article  ADS  Google Scholar 

  3. Tudu, B., Tiwari, A.: Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 146, 329–341 (2017)

    Article  ADS  Google Scholar 

  4. Berger, A., Linke, U., Oepen, H.P.: Symmetry-induced uniaxial anisotropy in ultrathin epitaxial cobalt films grown on cu (1 1 13). Phys. Rev. Lett. 68(6), 839 (1992)

    Article  ADS  Google Scholar 

  5. Weber, W., Back, C.H., Bischof, A., Würsch, Ch., Allenspach, R.: Morphology-induced oscillations of the magnetic anisotropy in ultrathin co films. Phys. Rev. Lett. 76(11), 1940 (1996)

    Article  ADS  Google Scholar 

  6. Iwasaki, S.-I.: Perpendicular magnetic recording—its development and realization—. Proc. Jpn. Acad. B 85(2), 37–54 (2009)

    Article  ADS  Google Scholar 

  7. Peng, S., Zhu, D., Zhou, J., Zhang, B., Cao, A., Wang, M., Cai, W., Cao, K., Zhao, W.: Modulation of heavy metal/ferromagnetic metal interface for high-performance spintronic devices. Adv. Electron. Mater. 5(8), 1900134 (2019)

    Article  Google Scholar 

  8. Calle, C., Calle, V.H., Cuéllar, F., Cortés, A., Arias, D., Lopera, W., Prieto, P., Guzmán, O., Mendoza, G.A.: Magneto-optical kerr effect in nizn ferrite films of variable thickness. Physica B 384(1–2), 103–105 (2006)

    Article  ADS  Google Scholar 

  9. Butera, A., Barnard, J.A.: Ferromagnetic resonance of permalloy artificially nanostructured films. IEEE Trans. Magn. 37(4), 2213–2215 (2001)

    Article  ADS  Google Scholar 

  10. Hoffmann, A.: Pure spin-currents. Physica Status Solidi C 4(11), 4236–4241 (2007)

    Article  ADS  Google Scholar 

  11. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W.: Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66(22), 224403 (2002)

    Article  ADS  Google Scholar 

  12. Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H., Yoshino, T., Harii, K., Fujikawa, Y., Matsuo, M., Maekawa, S., et al.: Inverse spin-hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109(10), 103913 (2011)

    Article  ADS  Google Scholar 

  13. Mosendz, O., Pearson, J.E., Fradin, F.Y., Bauer, G.E.W., Bader, S.D., Hoffmann, A.: Quantifying spin hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104(4), 046601 (2010)

    Article  ADS  Google Scholar 

  14. Harder, M., Gui, Y., Can-Ming, H.: Electrical detection of magnetization dynamics via spin rectification effects. Phys. Rep. 661, 1–59 (2016)

    Article  ADS  Google Scholar 

  15. Martín-Rio, S., Pomar, A., Balcells, L., Bozzo, B., Frontera, C., Martínez, B.: Temperature dependence of spin pumping and inverse spin hall effect in permalloy/Pt bilayers. J. Magn. Magn. Mater. 500, 166319 (2020)

    Article  Google Scholar 

  16. Martin-Rio, S., Frontera, C., Pomar, A., Balcells, L., Martinez, B.: Suppression of spin rectification effects in spin pumping experiments. Sci. Rep. 12(1), 224 (2022)

    Article  ADS  Google Scholar 

  17. Mosendz, O., Vlaminck, V., Pearson, J.E., Fradin, F.Y., Bauer, G.E.W., Bader, S.D., Hoffmann, A.: Detection and quantification of inverse spin hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82(21), 214403 (2010)

    Article  ADS  Google Scholar 

  18. Gupta, S., Medwal, R., Kodama, D., Kondou, K., Otani, Y.C., Fukuma, Y.: Important role of magnetization precession angle measurement in inverse spin hall effect induced by spin pumping. Appl. Phys. Lett. 110(2), 022404 (2017)

    Article  ADS  Google Scholar 

  19. Obstbaum, M., Härtinger, M., Bauer, H.G., Meier, T., Swientek, F., Back, C.H., Woltersdorf, G.: Inverse spin hall effect in ni 81 fe 19/normal-metal bilayers. Phys. Rev. B 89(6), 060407 (2014)

    Article  ADS  Google Scholar 

  20. Ren, H., Zheng, X.Y., Channa, S., Wu, G., O’Mahoney, D.A., Suzuki, Y., Kent, A.D.: Hybrid spin hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures. Nat. Commun. 14(1), 1406 (2023)

    Article  ADS  Google Scholar 

  21. Villard, P., Ebels, U., Houssameddine, D., Katine, J., Mauri, D., Delaet, B., Vincent, P., Cyrille, M.-C., Viala, B., Michel, J.-P., et al.: A ghz spintronic-based rf oscillator. IEEE J. Solid-State Circuits 45(1), 214–223 (2009)

    Article  ADS  Google Scholar 

  22. Tiwari, U., Ghosh, R., Sen, P.: Theory of magneto-optic Kerr effects. Phys. Rev. B 49(3), 2159 (1994)

    Article  ADS  Google Scholar 

  23. Hubert, A., Schäfer, R.: Magnetic domains: the analysis of magnetic microstructures. Springer Science & Business Media (1998)

    Google Scholar 

  24. Gonzalez-Fuentes, C., Dumas, R.K., García, C.: Systematic errors in the determination of the spectroscopic g-factor in broadband ferromagnetic resonance spectroscopy: a proposed solution. J. Appl. Phys. 123(2), 023901 (2018)

    Article  ADS  Google Scholar 

  25. Mecking, N., Gui, Y.S., Hu, C.-M.: Microwave photovoltage and photoresistance effects in ferromagnetic microstrips. Phys. Rev. B 76(22), 224430 (2007)

    Article  ADS  Google Scholar 

  26. Johnson, M.T., Bloemen, P.J.H., Den Broeder, F.J.A., De Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59(11), 1409 (1996)

    Article  ADS  Google Scholar 

  27. Fernando, G.W.: Magnetic anisotropy in transition metal systems. In: Handbook of Metal Physics, vol. 4, pp. 89–110. Elsevier (2008)

    Google Scholar 

  28. Hirayama, S., Kasai, S., Mitani, S.: Interface perpendicular magnetic anisotropy in ultrathin ta/nife/pt layered structures. Jpn. J. Appl. Phys. 57(1), 013001 (2017)

    Article  ADS  Google Scholar 

  29. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W.: Enhanced gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88(11), 117601 (2002)

    Article  ADS  Google Scholar 

  30. Saitoh, E., Ueda, M., Miyajima, H., Tatara, G.: Conversion of spin current into charge current at room temperature: inverse spin-hall effect. Appl. Phys. Lett. 88(18), 182509 (2006)

    Article  ADS  Google Scholar 

  31. Hirsch, J.E.: Spin hall effect. Phys. Rev. Lett. 83(9), 1834 (1999)

    Article  ADS  Google Scholar 

  32. Nakayama, H., Ando, K., Harii, K., Yoshino, T., Takahashi, R., Kajiwara, Y., Uchida, K., Fujikawa, Y., Saitoh, E.: Geometry dependence on inverse spin hall effect induced by spin pumping in ni 81 fe 19/pt films. Phys. Rev. B 85(14), 144408 (2012)

    Article  ADS  Google Scholar 

  33. Ando, K., Saitoh, E.: Observation of the inverse spin hall effect in silicon. Nat. Commun. 3(1), 629 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director National Physical Laboratory (CSIR - NPL) for his encouragement to carry out this work. Savita Sahu is grateful to the Council Scientific Research of India (CSIR), India, for the senior research fellowship (SRF) to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

1. Savita — investigation, formal analysis, and writing original draft. 2. B. S. R. Koteswara Rao — methodology, formal analysis and writing. 3. G. A. Basheed — conceptualization, editing, methodology; supervision, review and writing

Corresponding author

Correspondence to G. A. Basheed.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Koteswara Rao, B.S.R. & Basheed, G.A. Study of Angular-Dependent Magnetic Anisotropy and Spin Pumping-Induced Inverse Spin Hall Effect (ISHE) in Py and Py/Pt Bilayer: Realization of Quantum Metrology. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06744-3

Keywords

Navigation